2022-2023學(xué)年云南省臨滄市高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2022-2023學(xué)年云南省臨滄市高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2022-2023學(xué)年云南省臨滄市高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2022-2023學(xué)年云南省臨滄市高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2022-2023學(xué)年云南省臨滄市高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.已知正方體的個頂點(diǎn)中,有個為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個正三棱錐與正方體的全面積之比為A. B.C. D.2.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-23.設(shè)集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},則圖中陰影部分表示的集合的真子集有()個A.3 B.4C.7 D.84.已知向量,,則下列結(jié)論正確的是()A.// B.C. D.5.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.6.若函數(shù)是定義在上的偶函數(shù),則()A.1 B.3C.5 D.77.設(shè)命題,則為A. B.C. D.8.已知函數(shù)是上的偶函數(shù),且在區(qū)間上是單調(diào)遞增的,,,是銳角三角形的三個內(nèi)角,則下列不等式中一定成立的是A. B.C. D.9.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天10.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c11.函數(shù)f(x)圖象大致為()A. B.C. D.12.下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是A. B.C. D.二、填空題(本大題共4小題,共20分)13.若存在常數(shù)和,使得函數(shù)和對其公共定義域上的任意實數(shù)都滿足:和恒成立,則稱此直線為和的“隔離直線”.已知函數(shù),,若函數(shù)和之間存在隔離直線,則實數(shù)的取值范圍是______14.=______15.已知直線,直線若,則______________16.已知,若方程恰有個不同的實數(shù)解、、、,且,則______三、解答題(本大題共6小題,共70分)17.已知函數(shù),.(1)求函數(shù)的值域;(2)若存在實數(shù),使得在上有解,求實數(shù)的取值范圍.18.設(shè)函數(shù).(1)當(dāng)時,求函數(shù)的最小值;(2)若函數(shù)的零點(diǎn)都在區(qū)間內(nèi),求的取值范圍.19.已知定義域為的函數(shù)是奇函數(shù)(1)求實數(shù),的值;(2)判斷的單調(diào)性,并用單調(diào)性的定義證明;(3)當(dāng)時,恒成立,求實數(shù)的取值范圍20.如圖,四面體中,平面,,,,.(Ⅰ)求四面體的四個面的面積中,最大的面積是多少?(Ⅱ)證明:在線段上存在點(diǎn),使得,并求的值21.已知集合,(1)當(dāng)m=5時,求A∩B,;(2)若,求實數(shù)m取值范圍22.在平面直角坐標(biāo)系中,已知角的頂點(diǎn)都與坐標(biāo)原點(diǎn)重合,始邊都與x軸的非負(fù)半軸重合,角的終邊與單位圓交于點(diǎn),角的終邊在第二象限,與單位圓交于點(diǎn)Q,扇形的面積為.(1)求的值;(2)求的值.

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】所求的全面積之比為:,故選A.2、D【解析】分析:將化為,令,可得關(guān)于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關(guān)系化簡,設(shè),則,根據(jù)二次函數(shù)性質(zhì)當(dāng)時,y取最大值2,當(dāng)時,y取最小值.故選D.點(diǎn)睛:本題考查三角函數(shù)有關(guān)的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.3、C【解析】先求出A∩B={3,5},再求出圖中陰影部分表示的集合為:CU(A∩B)={1,2,4},由此能求出圖中陰影部分表示的集合的真子集的個數(shù)【詳解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},圖中陰影部分表示的集合為:CU(A∩B)={1,2,4},∴圖中陰影部分表示的集合的真子集有:23–1=8–1=7.故選C【點(diǎn)睛】本題考查集合的真子集的個數(shù)的求法,考查交集定義、補(bǔ)集、維恩圖等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題4、B【解析】采用排除法,根據(jù)向量平行,垂直以及模的坐標(biāo)運(yùn)算,可得結(jié)果【詳解】因為,所以A不成立;由題意得:,所以,所以B成立;由題意得:,所以,所以C不成立;因為,,所以,所以D不成立.故選:B.【點(diǎn)睛】本題主要考查向量的坐標(biāo)運(yùn)算,屬基礎(chǔ)題.5、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎(chǔ)題型.6、C【解析】先根據(jù)偶函數(shù)求出a、b的值,得到解析式,代入直接求解.【詳解】因為偶函數(shù)的定義域關(guān)于原點(diǎn)對稱,則,解得.又偶函數(shù)不含奇次項,所以,即,所以,所以.故選:C7、C【解析】特稱命題否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項為C.8、C【解析】因為是銳角的三個內(nèi)角,所以,得,兩邊同取余弦函數(shù),可得,因為在上單調(diào)遞增,且是偶函數(shù),所以在上減函數(shù),由,可得,故選C.點(diǎn)睛:本題考查了比較大小問題,解答中熟練推導(dǎo)抽象函數(shù)的圖象與性質(zhì),合理利用函數(shù)的單調(diào)性進(jìn)行比較大小是解答的關(guān)鍵,著重考查學(xué)生的推理與運(yùn)算能力,本題的解答中,根據(jù)銳角三角形,得出與的大小關(guān)系是解答的一個難點(diǎn).9、B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點(diǎn)睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.10、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】對A,令a=1,b=-2,此時滿足a>b,但a2<b對B,令a=1,b=-2,此時滿足a>b,但1a>1對C,若c=0,a>b,則ac=bc,故C錯;對D,∵a>b∴a-c>b-c,故D正確.故選:D.11、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點(diǎn)睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.12、C【解析】根據(jù)函數(shù)的單調(diào)性與奇偶性對選項中的函數(shù)進(jìn)行判斷即可【詳解】對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;對于B,f(x),在定義域(﹣∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),不能說函數(shù)在定義域上是減函數(shù),∴不滿足條件;對于C,f(x)=﹣x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;對于D,f(x)=x|x|,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件故答案為:C【點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性和奇偶性,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.二、填空題(本大題共4小題,共20分)13、【解析】由已知可得、恒成立,可求得實數(shù)的取值范圍.【詳解】因為函數(shù)和之間存在隔離直線,所以,當(dāng)時,可得對任意的恒成立,則,即,當(dāng)時,可得對恒成立,令,則有對恒成立,所以或,解得或,綜上所述,實數(shù)的取值范圍是.故答案為:.14、【解析】由題意結(jié)合指數(shù)的運(yùn)算法則和對數(shù)的運(yùn)算法則整理計算即可求得最終結(jié)果.【詳解】原式=3+-2=.故答案為點(diǎn)睛】本題考查了指數(shù)與對數(shù)運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題15、【解析】由兩條直線垂直,可得,解方程即可求解.詳解】若,則,解得,故答案為:【點(diǎn)睛】本題考查了由兩條直線互相垂直,求參數(shù)的范圍,熟練掌握直線垂直的充要條件是解題的關(guān)鍵,考查了運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】作出函數(shù)的圖象以及直線的圖象,利用對數(shù)的運(yùn)算可求得的值,利用正弦型函數(shù)的對稱性可求得的值,即可得解.【詳解】作出函數(shù)的圖象以及直線的圖象如下圖所示:由圖可知,由可得,即,所以,,可得,當(dāng)時,,由,可得,由圖可知,點(diǎn)、關(guān)于直線對稱,則,因此,.故答案為:.三、解答題(本大題共6小題,共70分)17、(1)(2)【解析】(1)結(jié)合題意得Mx=log2x,0<x<2(2)由題知,進(jìn)而換元得在上有解,再根據(jù)對勾函數(shù)求最值即可;【小問1詳解】解:函數(shù),因為,所以當(dāng)時,,.當(dāng)時,,.即Mx當(dāng)時,;當(dāng)時,.綜上:值域為.【小問2詳解】解:可以化為即:令,,所以,所以所以在上有解即在上有解令,則而當(dāng)且僅當(dāng),即時取等號所以實數(shù)的取值范圍是18、(1);(2)【解析】(1)分類討論得;(2)由題意,得到等價不等式,解得的取值范圍是試題解析:(1)∵函數(shù).當(dāng),即時,;當(dāng),即時,;當(dāng),即時,.綜上,(2)∵函數(shù)的零點(diǎn)都在區(qū)間內(nèi),等價于函數(shù)的圖象與軸的交點(diǎn)都在區(qū)間內(nèi).∴故的取值范圍是19、(1),(2)在上單調(diào)遞增,證明見解析(3)的取值范圍為.【解析】(1)根據(jù)得到,根據(jù)計算得到,得到答案.(2)化簡得到,,計算,得到是增函數(shù).(3)化簡得到,參數(shù)分離,求函數(shù)的最大值得到答案.【詳解】(1)因為在定義域R上是奇函數(shù).所以,即,所以.又由,即,所以,檢驗知,當(dāng),時,原函數(shù)是奇函數(shù).(2)在上單調(diào)遞增.證明:由(1)知,任取,則,因為函數(shù)在上是增函數(shù),且,所以,又,所以,即,所以函數(shù)R上單調(diào)遞增.(3)因為是奇函數(shù),從而不等式等價于,因為在上是增函數(shù),由上式推得,即對一切有恒成立,設(shè),令,則有,,所以,所以,即的取值范圍為.20、(Ⅰ);(Ⅱ)證明見解析.【解析】(1)易得,,,均為直角三角形,且的面積最大,進(jìn)而求解即可;(2)在平面ABC內(nèi),過點(diǎn)B作BN⊥AC,垂足為N.在平面PAC內(nèi),過點(diǎn)N作MN∥PA交PC于點(diǎn)M,連接BM,可證得AC⊥平面MBN,從而使得AC⊥BM,利用相似和平行求解即可.試題解析:(1)由題設(shè)AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB?平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB?平面PAB,所以,所以,,,均為直角三角形,且的面積最大,.(2)證明:在平面ABC內(nèi),過點(diǎn)B作BN⊥AC,垂足為N.在平面PAC內(nèi),過點(diǎn)N作MN∥PA交PC于點(diǎn)M,連接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM?平面MBN,所以AC⊥BM.因為與相似,,從而NC=AC-AN=.由MN∥PA,得==.21、(1),(2)【解析】(1)根據(jù)集合的交集、并集運(yùn)算即得解;(2)轉(zhuǎn)化為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論