廣西南寧市、玉林市、貴港市等2023屆高一上數(shù)學期末聯(lián)考試題含解析_第1頁
廣西南寧市、玉林市、貴港市等2023屆高一上數(shù)學期末聯(lián)考試題含解析_第2頁
廣西南寧市、玉林市、貴港市等2023屆高一上數(shù)學期末聯(lián)考試題含解析_第3頁
廣西南寧市、玉林市、貴港市等2023屆高一上數(shù)學期末聯(lián)考試題含解析_第4頁
廣西南寧市、玉林市、貴港市等2023屆高一上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).則“f(x)是偶函數(shù)“是“A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.中國茶文化博大精深,某同學在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關,某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學聯(lián)想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經(jīng)過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數(shù).該同學通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應大約冷卻()分鐘沖泡該綠茶(參考數(shù)據(jù):,)A.3 B.3.6C.4 D.4.83.已知,,則()A. B.C.或 D.4.已知向量,,則在方向上的投影為A. B.8C. D.5.下列函數(shù)是偶函數(shù),且在上單調(diào)遞減的是A. B.C. D.6.已知函數(shù)是定義在上的偶函數(shù),當時,,則的值是A. B.C. D.7.函數(shù)與(且)在同一坐標系中的圖象可能是()A. B.C. D.8.已知A(-4,2,3)關于xOz平面的對稱點為,關于z軸的對稱點為,則等于()A.8 B.12C.16 D.199.我國古代《九章算術》里,記載了一個“商功”的例子:今有芻童,下廣二丈,袤三丈,上廣三丈,袤四丈,高三丈.問積幾何?其意思是:今有上下底面皆為長方形的草垛(如圖所示),下底寬2丈,長3丈;上底寬3丈,長4丈;高3丈.問它的體積是多少?該書提供的算法是:上底長的2倍與下底長的和與上底寬相乘,同樣下底長的2倍與上底長的和與下底寬相乘,將兩次運算結果相加,再乘以高,最后除以6.則這個問題中的芻童的體積為A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈10.定義在上的奇函數(shù)滿足,且當時,,則()A. B.2C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.函數(shù)的定義域為D,給出下列兩個條件:①對于任意,當時,總有;②在定義域內(nèi)不是單調(diào)函數(shù).請寫出一個同時滿足條件①②的函數(shù),則______________.12.若函數(shù)y=是函數(shù)的反函數(shù),則_________________13.已知是定義在上的奇函數(shù),當時,,則的值為________________14.某扇形的圓心角為2弧度,周長為4cm,則該扇形面積為_____cm215.已知函數(shù)定義域為,若滿足①在內(nèi)是單調(diào)函數(shù);存在使在上的值域為,那么就稱為“半保值函數(shù)”,若函數(shù)且是“半保值函數(shù)”,則的取值范圍為________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知向量,,設函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值17.已知集合,或(1)若,求a取值范圍;(2)若,求a的取值范圍18.如圖,在三棱柱中,側棱平面,、分別是、的中點,點在側棱上,且,,求證:(1)直線平面;(2)平面平面.19.已知正方體,分別為和上的點,且,.(1)求證:;(2)求證:三條直線交于一點.20.觀察以下等式:①②③④⑤(1)對①②③進行化簡求值,并猜想出④⑤式子的值;(2)根據(jù)上述各式的共同特點,寫出一條能反映一般規(guī)律的等式,并對等式的正確性作出證明21.設函數(shù).(1)當時,求函數(shù)的最小值;(2)若函數(shù)的零點都在區(qū)間內(nèi),求的取值范圍.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】利用必要不充分條件的概念,結合三角函數(shù)知識可得答案.【詳解】若φ=π2,則f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)為偶函數(shù),則φ=kπ+π2,k∈Z,所以“f(x)是偶函數(shù)“是“φ=π故選:B【點睛】關鍵點點睛:掌握必要不充分條件的概念是解題關鍵.2、B【解析】根據(jù)題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.3、A【解析】利用兩邊平方求出,再根據(jù)函數(shù)值的符號得到,由可求得結果.【詳解】,,,,,,所以,,.故選:A..4、D【解析】依題意有投影為.5、D【解析】函數(shù)為奇函數(shù),在上單調(diào)遞減;函數(shù)為偶函數(shù),在上單調(diào)遞增;函數(shù)為非奇非偶函數(shù),在上單調(diào)遞減;函數(shù)為偶函數(shù),在上單調(diào)遞減故選D6、B【解析】根據(jù)偶函數(shù)性質(zhì)的,再代入對應解析式得結果.【詳解】因為函數(shù)是定義在上的偶函數(shù),所以,選B.【點睛】本題考查偶函數(shù)應用,考查基本轉化求解能力,屬于基礎題.7、B【解析】分析一次函數(shù)的單調(diào)性,可判斷AD選項,然后由指數(shù)函數(shù)的單調(diào)性求得的范圍,結合直線與軸的交點與點的位置關系可得出合適的選項.【詳解】因為一次函數(shù)為直線,且函數(shù)單調(diào)遞增,排除AD選項.對于B選項,指數(shù)函數(shù)單調(diào)遞減,則,可得,此時,一次函數(shù)單調(diào)遞增,且直線與軸的交點位于點的上方,合乎題意;對于C選項,指數(shù)函數(shù)單調(diào)遞減,則,可得,此時,一次函數(shù)單調(diào)遞增,且直線與軸的交點位于點的下方,不合乎題意.故選:B.8、A【解析】由題可知∴故選A9、B【解析】根據(jù)題目給出的體積計算方法,將幾何體已知數(shù)據(jù)代入計算,求得幾何體體積【詳解】由題,芻童的體積為立方丈【點睛】本題考查幾何體體積的計算,正確利用題目條件,弄清楚問題本質(zhì)是關鍵10、D【解析】根據(jù)題意,由,分析可得,即可得函數(shù)的周期為4,則有,由函數(shù)的解析式以及奇偶性可得的值,即可得答案【詳解】解:根據(jù)題意,函數(shù)滿足,即,則函數(shù)的周期為4,所以又由函數(shù)為奇函數(shù),則,又由當,時,,則;則有;故選:【點睛】本題考查函數(shù)奇偶性、周期性的應用,注意分析得到函數(shù)的周期,屬于中檔題二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】根據(jù)題意寫出一個同時滿足①②的函數(shù)即可.【詳解】解:易知:,上單調(diào)遞減,上單調(diào)遞減,故對于任意,當時,總有;且在其定義域上不單調(diào).故答案為:.12、0【解析】可得,再代值求解的值即可【詳解】的反函數(shù)為,則,則,則.故答案為:013、-7【解析】由已知是定義在上的奇函數(shù),當時,,所以,則=點睛:利用函數(shù)奇偶性求有關參數(shù)問題時,要靈活選用奇偶性的常用結論進行處理,可起到事半功倍的效果:①若奇函數(shù)在處有定義,則;②奇函數(shù)+奇函數(shù)=奇函數(shù),偶函數(shù)+偶函數(shù)=偶函數(shù),奇函數(shù)奇函數(shù)=偶函數(shù)偶函數(shù)=偶函數(shù);③特殊值驗證法14、1【解析】設該扇形的半徑為,根據(jù)題意,因為扇形的圓心角為弧度,周長為,則有,,故答案為.15、【解析】根據(jù)半保值函數(shù)的定義,將問題轉化為與的圖象有兩個不同的交點,即有兩個不同的根,換元后轉化為二次方程的實根的分布可解得.【詳解】因為函數(shù)且是“半保值函數(shù)”,且定義域為,由時,在上單調(diào)遞增,在單調(diào)遞增,可得為上的增函數(shù);同樣當時,仍為上的增函數(shù),在其定義域內(nèi)為增函數(shù),因為函數(shù)且是“半保值函數(shù)”,所以與的圖象有兩個不同的交點,所以有兩個不同的根,即有兩個不同的根,即有兩個不同的根,可令,,即有有兩個不同正數(shù)根,可得,且,解得.【點睛】本題考查函數(shù)的值域的求法,解題的關鍵是正確理解“半保值函數(shù)”,解題時要認真審題,仔細解答,注意合理地進行等價轉化三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;Ⅱ根據(jù)的范圍得的范圍,結合正弦函數(shù)的單調(diào)性可得的最大最小值【詳解】Ⅰ,,,,由,得,所以的增區(qū)間為,;Ⅱ,,可得,的最大值為5,最小值為4【點睛】以三角形和平面向量為載體,三角恒等變換為手段,三角函數(shù)的圖象與性質(zhì)為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導公式以及二倍角公式,一定要熟練掌握并靈活應用,特別是二倍角公式的各種變化形式要熟記于心.17、(1)(2)【解析】(1)根據(jù)交集的定義,列出關于的不等式組即可求解;(2)由題意,,根據(jù)集合的包含關系列出關于的不等式組即可求解;【小問1詳解】解:∵或,且,∴,解得,∴a的取值范圍為;【小問2詳解】解:∵或,且,∴,∴或,即或,∴a的取值范圍是.18、(1)證明見解析;(2)證明見解析.【解析】(1)由中位線的性質(zhì)得出,由棱柱的性質(zhì)可得出,由平行線的傳遞性可得出,進而可證明出平面;(2)證明出平面,可得出,結合可證明出平面,再由面面垂直的判定定理即可證明出結論成立.【詳解】(1)、分別為、的中點,為的中位線,,為棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【點睛】本題考查線面平行和面面垂直的證明,考查推理能力,屬于中等題.19、(1)詳見解析;(2)詳見解析【解析】(1)連結和,由條件可證得和,從而得到∥.(2)結合題意可得直線和必相交,根據(jù)線面關系再證明該交點直線上即可得到結論【詳解】證明:(1)如圖,連結和,在正方體中,,∵,∴,又,,∴又在正方體中,,,∴,又,∴同理可得,又,∴∴∥.(2)由題意可得(或者和不平行),又由(1)知∥,所以直線和必相交,不妨設,則,又,所以,同理因為,所以,所以、、三條直線交于一點【點睛】(1)證明兩直線平行時,可根據(jù)三種平行間的轉化關系進行證明,也可利用線面垂直的性質(zhì)進行證明,解題時要注意合理選擇方法進行求解(2)證明三線共點的方法是:先證明其中的兩條直線相交,再證明該交點在第三條直線上.解題時要依據(jù)空間中的線面關系及三個公理,并結合圖形進行求解2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論