2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年河南省許昌市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.若,則()。A.-1B.0C.1D.不存在

2.

A.2e-2x+C

B.

C.-2e-2x+C

D.

3.

4.

5.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C

6.

7.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

8.點(-1,-2,-5)關(guān)于yOz平面的對稱點是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)

9.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

10.

11.()。A.

B.

C.

D.

12.A.A.1

B.3

C.

D.0

13.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

14.

15.A.2B.1C.1/2D.-2

16.

17.A.0B.1C.2D.-1

18.

19.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.20.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)21.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)

B.c1y1(x)+y2(x)

C.y1(x)+y2(x)

D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).

22.A.A.發(fā)散B.絕對收斂C.條件收斂D.收斂性與k有關(guān)23.A.A.

B.

C.

D.

24.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸25.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)

26.

27.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

28.滑輪半徑,一0.2m,可繞水平軸0轉(zhuǎn)動,輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動規(guī)律為φ=0.15t3rad,其中t單位為s。當(dāng)t-2s時,輪緣上M點速度、加速度和物體A的速度、加速度計算不正確的是()。

A.M點的速度為VM=0.36m/s

B.M點的加速度為aM=0.648m/s2

C.物體A的速度為VA=0.36m/s

D.物體A點的加速度為aA=0.36m/s2

29.A.A.-3/2B.3/2C.-2/3D.2/3

30.

31.。A.

B.

C.

D.

32.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

33.輥軸支座(又稱滾動支座)屬于()。

A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束

34.下列關(guān)于動載荷的敘述不正確的一項是()。

A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計

B.勻速直線運動時的動荷因數(shù)為

C.自由落體沖擊時的動荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

35.

36.A.A.2/3B.3/2C.2D.3

37.

38.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

39.

40.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

41.設(shè)Y=e-3x,則dy等于().

A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

42.

43.A.0

B.1

C.e

D.e2

44.

45.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面

46.

A.

B.

C.

D.

47.曲線y=ex與其過原點的切線及y軸所圍面積為

A.

B.

C.

D.

48.

49.

50.建立共同愿景屬于()的管理觀念。

A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理二、填空題(20題)51.

52.53.

54.

55.

56.冪級數(shù)的收斂半徑為______.

57.

58.

59.

60.微分方程dy+xdx=0的通解y=_____.

61.

62.

63.

64.

65.

66.

67.

68.

69.若=-2,則a=________。

70.

三、計算題(20題)71.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則72.

73.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

74.

75.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.78.79.

80.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

81.證明:

82.

83.將f(x)=e-2X展開為x的冪級數(shù).84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.85.86.求曲線在點(1,3)處的切線方程.

87.求微分方程y"-4y'+4y=e-2x的通解.

88.

89.求微分方程的通解.90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.四、解答題(10題)91.計算∫xsinxdx。

92.

93.

94.設(shè)z=z(x,y)由方程z3y-xz-1=0確定,求出。

95.求z=x2+y2在條件x+y=1下的條件極值.

96.(本題滿分8分)

97.求方程y''-2y'+5y=ex的通解.

98.

99.100.五、高等數(shù)學(xué)(0題)101.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域為()。

A.[一1,1]B.[0,2]C.[0,1]D.[1,2]六、解答題(0題)102.求由方程確定的y=y(x)的導(dǎo)函數(shù)y'.

參考答案

1.D不存在。

2.D

3.C

4.D

5.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識點。

6.B

7.A本題考查的知識點為偏導(dǎo)數(shù)的計算。對于z=x2y,求的時候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

8.D關(guān)于yOz平面對稱的兩點的橫坐標(biāo)互為相反數(shù),故選D。

9.C選項A中,y=|x|,在x=0處有尖點,即y=|x|在x=0處不可導(dǎo);選項B中,在x=0處不存在,即在x=0處不可導(dǎo);選項C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實上,在x=0點就沒定義).

10.A

11.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。

12.B本題考查的知識點為重要極限公式.可知應(yīng)選B.

13.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。

14.D解析:

15.A本題考查了等價無窮小的代換的知識點。

16.C解析:

17.C

18.C

19.B本題考查的知識點為導(dǎo)數(shù)的運算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

20.C

21.D

22.C

23.D本題考查的知識點為級數(shù)的基本性質(zhì).

24.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

25.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).

由于y=xlnx,可知

y'=1+lnx,

切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有

1+lnx0=2,

可解得x0=e,從而知

y0=x0lnx0=elne=e.

故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.

26.B

27.C

28.B

29.A

30.D

31.A本題考查的知識點為定積分換元積分法。

因此選A。

32.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知

可知應(yīng)選A。

33.C

34.C

35.A

36.A

37.B

38.C

39.C

40.D本題考查了曲線的漸近線的知識點,

41.C

42.D

43.B為初等函數(shù),且點x=0在的定義區(qū)間內(nèi),因此,故選B.

44.C

45.B

46.B

47.A

48.D

49.D

50.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。

51.(-33)

52.本題考查的知識點為微分的四則運算.

注意若u,v可微,則

53.本題考查的知識點為定積分的基本公式。

54.55.本題考查的知識點為無窮小的性質(zhì)。

56.

解析:本題考查的知識點為冪級數(shù)的收斂半徑.

注意此處冪級數(shù)為缺項情形.

57.

本題考查的知識點為定積分的換元法.

解法1

解法2

令t=1+x2,則dt=2xdx.

當(dāng)x=1時,t=2;當(dāng)x=2時,t=5.

這里的錯誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.

58.x2+y2=Cx2+y2=C解析:

59.arctanx+C60.

61.|x|

62.

63.ex2

64.

65.

66.

解析:

67.

68.x+2y-z-2=069.因為=a,所以a=-2。

70.71.由等價無窮小量的定義可知

72.

73.

74.

75.

76.函數(shù)的定義域為

注意

77.

78.

79.

80.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

81.

82.

83.84.由二重積分物理意義知

85.

86.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

87.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

88.由一階線性微分方程通解公式有

89.

90.

列表:

說明

91.∫xsinxdx=x(-cosx)-∫(-cosx)dx=-xcosx+sinx+C。

92.

93.

94.95.構(gòu)造拉格朗日函數(shù)

可解得唯一組解x=1/2,y=1/2.所給問題可以解釋為在直線x+y=1上求到原點的距離平方最大或最小的點.由于實際上只能存在距離平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論