spss的試題答案結果_第1頁
spss的試題答案結果_第2頁
spss的試題答案結果_第3頁
spss的試題答案結果_第4頁
spss的試題答案結果_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 統(tǒng)計復習題目一.某公司管理人員為了解某化妝品在一個城市的月銷售量Y(單位:箱)與該城市中適合使用該化妝品的人數(shù)(單位:千人)以及他們 人均月收入(單位:元)之間的關系,在某個月中對15個城市做調查,得上述各量的觀測值如表A1所示.假設Y與,之間滿足線性回歸關系 其中獨立同分布于.(1)求回歸系數(shù)的最小二乘估計值和誤差方差的估計值,寫出回歸方程并對回歸系數(shù)作解釋;analyze-regression-linear,y to dependent,x1 x2 to indepents ,statistics-confidence intervals,save-unstandardized. Pre

2、diction individual-individual.ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Interval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)3.4532.4311.420.181-1.8438.749x1.496.006.93481.924.000.483.509x2.009.001.1089.502.000.007.011a. Dependent Variable:

3、 yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計值和誤差方差的估計值分別為:3.453,0.496,0.009和=4.740. 回歸方程為y=0.496*x1+0.009*x2+3.453 回歸系數(shù)解釋:3.453可理解為化妝品的月基本銷售量,當人均月收入固定時,

4、適合使用該化妝品的人數(shù)每提高一個單位,月銷售量Y將增加0.496個單位;當適合使用該化妝品的人數(shù)固定時,人均月收入每提高一個單位,月銷售量 Y將增加0.009個單位(2)求出方差分析表,解釋對線性回歸關系顯著性檢驗的結果.求復相關系數(shù)的平方的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Var

5、iable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.999a.999.9992.17722a. Predictors: (Constant), x2, x1由于P值=0.000<0.05,所以回歸關系顯著.值=0.999,說明Y與,之間的線性回歸關系是高度顯著的(3)分別求和的置信度為的置信區(qū)間;coefficients的后面部分.和的置信度為的置信區(qū)間分別為(0.483,0.509),(0.007,0.011)(4)對,分別檢驗人數(shù)及收入對銷量Y的影響是否顯著;由于系數(shù),對應的檢

6、驗P值分別為0.000,0.000都小于0.05,所以適合使用該化妝品的人數(shù)和人均月收入 對月銷售量Y的影響是顯著的(5)該公司欲在一個適宜使用該化妝品的人數(shù),人均月收入的新城市中銷售該化妝品,求其銷量的預測值及置信為0.95的置信區(qū)間.Y的預測值及置信度為0.95的置信區(qū)間分別為:135.5741和(130.59977,140.54305)在數(shù)據(jù)表中直接可以看見二、某班42名男女學生全部參加大學英語四級水平考試,數(shù)據(jù)如下:(數(shù)據(jù)表為A2)不合格1合格2男生1262女生286問男女生在英語學習水平上有無顯著差異?單擊weight cases-weight cases by-x, ok, ana

7、lyze-descriptive statistics-crosstabs,(列聯(lián)表分析)sex to rows,score to column, exact-exact, statistics chi-square ,ok.Chi-Square TestsValuedfAsymp. Sig. (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)Point ProbabilityPearson Chi-Square7.721a1.005.010.010Continuity Correctionb5.5781.018Likelihood Ratio7

8、.3691.007.037.010Fisher's Exact Test.010.010Linear-by-Linear Association7.537c1.006.010.010.010N of Valid Cases42a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.67.b. Computed only for a 2x2 tablec. The standardized statistic is 2.745.原假設不顯著,看這個(Asymp. Sig. (2

9、-sided))。Pearson Chi-Square(卡方檢驗) and Likelihood Ratio(似然比) all <0.05 男女生在英語學習水平上差異是顯著的三、將一塊耕地等分為24個小區(qū),今有3種不同的小麥品種(d)和2種不同的肥料(B1,B2),現(xiàn)將各小麥品種與各種肥料進行搭配,對每種搭配都在4個小區(qū)上試驗,測得每個小區(qū)產(chǎn)量的數(shù)據(jù)如表A3所示.(1)假設所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應在下是否顯著?3.0Analyze-general linear model-univariate,x to dependent variable,a and

10、b to fixed factor, ok Tests of Between-Subjects EffectsDependent Variable:xSourceType III Sum of SquaresdfMean SquareFSig.Corrected Model263.333a552.66721.545.0003650.66713650.6671.493E3.000a190.333295.16738.932.000b54.000154.00022.091.000a * b19.00029.5003.886.040Error44.000182.444Total3958.00024Co

11、rrected Total307.33323a. R Squared = .857 (Adjusted R Squared = .817)由于交互效應檢驗P值=0.04<0.05,所以小麥(A)與肥料(B)之間的交互效應是顯著的.(2)若A與B的交互效應顯著,分別就B的各水平,給出在A的各水平上的均值的置信度為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時置信區(qū)間.3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a

12、 to post hoc tests for, bonferroni,options-a to display means for.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound19.000.6877.44510.555210.000.6878.44511.555313.500.68711.94515.055Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Conf

13、idence IntervalLower BoundUpper Bound12-1.00.972.991-3.851.853-4.50*.972.004-7.35-1.65211.00.972.991-1.853.853-3.50*.972.017-6.35-.65314.50*.972.0041.657.3523.50*.972.017.656.35Based on observed means. The error term is Mean Square(Error) = 1.889.*. The mean difference is significant at the .05 leve

14、l.固定肥料的水平,的置信度為0.95的置信區(qū)間分別為(7.445,10.555),(8.445,11.555),(11.945,15.055);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-3.85,1.85),(-7.35,-1.65),(-6.35,-0.65)2. Analyze-general linear model-univariate, x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for,bonferroni,options-a to display means

15、 for,.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound110.500.8668.54112.459212.000.86610.04113.959319.000.86617.04120.959Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-1.501.225.755-5.09

16、2.093-8.50*1.225.000-12.09-4.91211.501.225.755-2.095.093-7.00*1.225.001-10.59-3.41318.50*1.225.0004.9112.0927.00*1.225.0013.4110.59Based on observed means. The error term is Mean Square(Error) = 3.000.*. The mean difference is significant at the .05 level.固定肥料的水平,的置信度為0.95的置信區(qū)間分別(8.541,12.459),(10.0

17、41,13.959),(17.041,20.959)的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-5.09,2.09),(-12.09,-4.91),(-10.59,-3.41)四、數(shù)據(jù)表A4給出了我國31個省市自治區(qū)的的經(jīng)濟發(fā)展狀況,所考察的八個指標為:地區(qū)生產(chǎn)總值;:居民消費水平;:基本建設投資;職工平均工資; :居民消費價格指數(shù);:商品零售價格指數(shù);:貨物周轉量;:工業(yè)總產(chǎn)值。(1)從樣本相關系數(shù)矩陣出發(fā)做主成分分析,求各主成分的貢獻率及前三個主成分的累計貢獻率;求出前三個主成分的表達式。Analyze-data-reduction-factor將八個成分全部選入va

18、riables,extraction-extract-number of factors-8,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.74146.76146.7613.74146.76146.76122.39429.92676.6872.39429.92676.6873.7389.23185.918.7389.23185.9184.4

19、806.00691.9235.4375.46697.3896.1421.77699.1657.060.74599.9108.007.090100.000Extraction Method: Principal Component Analysis.Component MatrixaComponent12345678地區(qū)生產(chǎn)總值.814.556-.116.031-.035-.028-.094-.061居民消費水平.766-.493.195-.076.212-.285.005.006基本建設投資.785.558-.141.085-.083-.013.196.003職工平均工資.604-.572.0

20、16.465.264.149-.002-.002居民消費價格指數(shù)-.314.599.666.298-.091-.051-.007.001商品零售價格指數(shù)-.397.721-.006-.131.552.029.013.000貨物周轉量.761-.181.458-.380-.005.185.017-.004工業(yè)總產(chǎn)值.823.540-.116.020-.042.019-.109.058Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or direa.

21、8 components extracted.各主成分的貢獻率分別為46.761%,29.926%,9.231%,6.006%,5.466%,1.776%,0.745%,0.09%.前三個主成分的累計貢獻率為85.918%.y1=0.814x1+0.766x2+0.785x3+0.604x4-0.314x5-0.397x6+0.761x7+0.823x8y2=0.556x1-0.493x2+0.558x3-0.572x4+0.599x5+0.721x6-0.181x7+0.540x8(2)本相關系數(shù)矩陣出發(fā)做因子分析,提取三個公共因子F1,F(xiàn)2,F(xiàn)3,說明每個公共因子各由哪些指標解釋,并解釋每

22、個公共因子的具體意義。1.求出三個公共因子F1,F(xiàn)2,F(xiàn)3的表達式。Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-number of factors-3,descriptives-correlation matrix- coefficients, rotation-method- varimax, scores-save as variables,display factor score coefficient matrix, okComponent Score Coefficient MatrixComp

23、onent123地區(qū)生產(chǎn)總值.341-.075-.062居民消費水平-.031.380.092基本建設投資.343-.097-.089職工平均工資-.036.258-.125居民消費價格指數(shù)-.085.220.910商品零售價格指數(shù).114-.254.157貨物周轉量-.021.468.460工業(yè)總產(chǎn)值.339-.069-.065Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or dire Undefined error #11408 - Can

24、not open text file "F:SPSSspsslangenspss.err": No such file or direF1=0.341x1-0.031x2+0.343x3-0.036x4-0.085x5+0.114x6-0.021x7+0.339x82.根據(jù)三個公共因子F1,F(xiàn)2,F(xiàn)3的得分,對31個省市自治區(qū)進行分層聚類分析,要求樣本間用歐氏平方距離,類間用類內平均連接法,如果聚為4類,寫出每一類成員。Analyze-classify-hierarchical cluster,F1.F2.F3 to variables,地區(qū) to label cases

25、by, statistics-cluster member ship-single solution-number of cluster-4. method-cluster method-median clustering,save- cluster member ship-single solution-number of cluster-4.ok 分類在表的最后一列可以讀出。五、表B1給出了煤凈化過程的一組數(shù)據(jù),Y為凈化后煤溶液中所含雜質的重量,這是衡量凈化效率的指標,X1表示輸入凈化過程的溶液所含的煤與雜質的比,X2是溶液的PH值,X3是溶液的流量。假設Y與,和之間滿足線性回歸關系 其中

26、獨立同分布于.(1) 求回歸系數(shù)的最小二乘估計值和誤差方差的估計值,寫出回歸方程并對回歸系數(shù)作解釋;analyze-regression-linear,y to dependent,x1 x2 x3to independent ,statistics-confidence intervals, save-unstandardized. Prediction individual-individual .ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Inte

27、rval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)397.08762.7576.327.000252.370541.805x1-110.75014.762-.841-7.502.000-144.792-76.708x215.5834.921.3553.167.0134.23626.931x3-.058.026-.255-2.274.053-.117.001a. Dependent Variable: yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.0243

28、10385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Predictors: (Constant), x3, x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計值和誤差方差的估計值分別為:397.087,-110.75,15.583,-0.058和435.862y=-110.750*x1+15.583*x2-0.058*x3+397.087回歸系數(shù)解釋:397.087可理解為雜質的基本重量,當PH值和溶液流量固定時,輸入凈化過程的溶液所含的煤與雜質的比 每提高一個單位,雜質的重量 Y將減少1

29、10.75個單位;當輸入凈化過程的溶液所含的煤與雜質的比和溶液流量固定時,PH值每提高一個單位,雜質的重量Y將增加15.583個單位;當輸入凈化過程的溶液所含的煤與雜質的比和PH值固定時,溶液流量每提高一個單位,雜質的重量Y將減少0.058個單位。(2)求出方差分析表,解釋對線性回歸關系顯著性檢驗的結果.求復相關系數(shù)的平方的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.024310385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Pr

30、edictors: (Constant), x3, x2, x1b. Dependent Variable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.948a.899.86220.87730a. Predictors: (Constant), x3, x2, x1由于P值=0.000<0.05,所以回歸關系顯著.值=0.899,說明Y與,之間的線性回歸關系是顯著的(3)分別求,和的置信度為的置信區(qū)間;coefficients的后面部分,和的置信度為的置信區(qū)間分別為(-144.792,

31、-76.708),(4.236,26.931),(-0.117,0.001)(4)對,分別檢驗, 和對Y的影響是否顯著;由于系數(shù),對應的檢驗P值分別為0.000,0.013都小于0.05,所以和 對Y的影響是顯著的.而對應的檢驗P值為0.053大于0.05,所以對Y的影響是不顯著的。(5)若有,的值,求Y的預測值及置信度為0.95的置信區(qū)間.Y的預測值及置信度為0.95的置信區(qū)間分別為:218.64484和(166.93687,270.35282)在數(shù)據(jù)表中直接可以看見六、考察四種不同催化劑對某一化工產(chǎn)品得率的影響,在四種不同催化劑下分別做了6次實驗,得數(shù)據(jù)如表B2所示.假定各種催化劑下產(chǎn)品的

32、得率服從同方差的正態(tài)分布,試在下,檢驗四種不同催化劑對該化工產(chǎn)品的得率有無顯著影響.要寫出方差分析表。方差分析表:Analyzecompare means -one-way anova,x to dependent list,a to factor ,okANOVAxSum of SquaresdfMean SquareFSig.Between Groups.0063.0021.306.300Within Groups.03020.001Total.03623由于檢驗P值=0.300>0.05,所以認為四種不同催化劑對該化工產(chǎn)品的得率在水平0.05下無顯著差異。 七、為了研制一種治療枯草

33、熱病的藥物,將兩種成分(A和B)各按三種不同劑量(低、中、高)混合,將36位自愿受試患者隨機分為9組,每組4人服用各種劑量混合下的藥物,記錄其病情緩解的時間(單位:小時)數(shù)據(jù)如表B3所示.(1)假設所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應在下是否顯著?B3.0.Analyze-general linear model-univariate,x to dependent variable,a and b to fixed factor, okTests of Between-Subjects EffectsDependent Variable:xSourceType III S

34、um of SquaresdfMean SquareFSig.Corrected Model373.105a846.638774.910.0001857.61011857.6103.086E4.000a220.0202110.0101.828E3.000b123.660261.8301.027E3.000a * b29.42547.356122.227.000Error1.62527.060Total2232.34036Corrected Total374.73035a. R Squared = .996 (Adjusted R Squared = .994)交互效應檢驗P值=0.000<

35、;0.05,所以成分 (A)與成分(B)之間的交互效應是顯著的(2)若A與B 的交互效應顯著,分別就A的各水平,給出在B的各水平上的均值的置信度為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時置信區(qū)間.B3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variab

36、le:xbMeanStd. Error95% Confidence IntervalLower BoundUpper Bound12.475.1102.2262.72424.600.1104.3514.84934.575.1104.3264.824Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-2.1250*.15546.000-2.5810-1.66903-2.1000*.15546.000-2

37、.5560-1.6440212.1250*.15546.0001.66902.58103.0250.155461.000-.4310.4810312.1000*.15546.0001.64402.55602-.0250.155461.000-.4810.4310Based on observed means. The error term is Mean Square(Error) = .048.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(2.226,2.724),(4.

38、351,4.849),(4.326,4.824);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-2.581,-1.669),(-2.556,-1.644),(-0.431,0.481)B3.2.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Er

39、ror95% Confidence IntervalLower BoundUpper Bound15.450.1275.1625.73828.925.1278.6379.21339.125.1278.8379.413Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-3.4750*.18028.000-4.0038-2.94623-3.6750*.18028.000-4.2038-3.1462213.

40、4750*.18028.0002.94624.00383-.2000.18028.888-.7288.3288313.6750*.18028.0003.14624.20382.2000.18028.888-.3288.7288Based on observed means. The error term is Mean Square(Error) = .065.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.162,5.738),(8.637,9.213),(8.837,

41、9.413);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-4.0038,-2.9462),(-4.2038,-3.1462),(-0.7288,0.3288)B3.3.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Error95% Confi

42、dence IntervalLower BoundUpper Bound15.975.1305.6826.268210.275.1309.98210.568313.250.13012.95713.543Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-4.3000*.18333.000-4.8378-3.76223-7.2750*.18333.000-7.8128-6.7372214.3000*.1

43、8333.0003.76224.83783-2.9750*.18333.000-3.5128-2.4372317.2750*.18333.0006.73727.812822.9750*.18333.0002.43723.5128Based on observed means. The error term is Mean Square(Error) = .067.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.682,6.268),(9.982,10.568),(12.9

44、57,13.543);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為(-4.8378,-3.7622),(-7.8128,-6.7372),(-3.5128,-2.4372). 八、表B4給出了1991年我國30個省、區(qū)、市城鎮(zhèn)居民的月平均消費數(shù)據(jù),所考察的八個指標如下(單位均為元/人):人均糧食支出;:人均副食支出;:人均煙酒茶支出;人均其他副食支出; :人均衣著商品支出;:人均日用品支出;:人均燃料支出;:人均非商品支出(1)從出發(fā)做主成分分析,求各主成分的貢獻率及前兩個主成分的累計貢獻率; Analyze-data-reduction-factor將八個成分全部選入var

45、iables,extraction-extract-number of factors-2,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.09638.70438.7043.09638.70438.70422.36729.59068.2942.36729.59068.2943.92011.50079.7944.7068.82488.6185.

46、4986.23194.8486.2302.87497.7227.1311.63599.3578.051.643100.000Extraction Method: Principal Component Analysis.第一,第二,第八主成分的貢獻率分別為:38.704%,29.59%,11.5%,8.824%,6.231%,2.874%,1.635%,0.635%. 前兩個主成分的累計貢獻率68.294%.(2)求出前兩個主成分并解釋其意義.Component MatrixaComponent12x1.439-.371x2.914-.058x3-.033.731x4.447.828x5.038.885x6.867.207x7.558-.401x8.896-.134Undefined error #11401 - Cannot open text file "C:Program Files

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論