




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆陜西省商南縣重點(diǎn)達(dá)標(biāo)名校中考聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一個(gè)圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.42.如圖,點(diǎn)A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長等于()A.π B.2π C.3π D.4π3.如圖,在中,面積是16,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長的最小值為()A.6 B.8 C.10 D.124.估計(jì)﹣÷2的運(yùn)算結(jié)果在哪兩個(gè)整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和45.一元二次方程2x2﹣3x+1=0的根的情況是()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根6.如圖,直角坐標(biāo)平面內(nèi)有一點(diǎn),那么與軸正半軸的夾角的余切值為()A.2 B. C. D.7.如圖,數(shù)軸上的A、B、C、D四點(diǎn)中,與數(shù)﹣表示的點(diǎn)最接近的是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D8.下列計(jì)算結(jié)果等于0的是()A. B. C. D.9.如圖所示,是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA10.如圖所示的幾何體的主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知同一個(gè)反比例函數(shù)圖象上的兩點(diǎn)、,若,且,則這個(gè)反比例函數(shù)的解析式為______.12.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為.13.在平面直角坐標(biāo)系xOy中,點(diǎn)A(4,3)為⊙O上一點(diǎn),B為⊙O內(nèi)一點(diǎn),請寫出一個(gè)符合條件要求的點(diǎn)B的坐標(biāo)______.14.如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O、A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于______.15.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.16.已知一組數(shù)據(jù)-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據(jù)的中位數(shù)為______.17.如圖所示,直線y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線于P點(diǎn),連OP,則OP2﹣OA2=__.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ACB=90°,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC相切于點(diǎn)D,與AB交于點(diǎn)E,連接ED并延長交AC的延長線于點(diǎn)F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.19.(5分)某中學(xué)開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是40人.
請你根據(jù)圖中信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的圓心角度數(shù)是_____°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生1200人,試估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù).20.(8分)計(jì)算:﹣(﹣2)2+|﹣3|﹣20180×21.(10分)如圖,在Rt△ABC中,,CD⊥AB于點(diǎn)D,BE⊥AB于點(diǎn)B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.22.(10分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)和,雙曲線經(jīng)過點(diǎn)B.(1)求直線和雙曲線的函數(shù)表達(dá)式;(2)點(diǎn)C從點(diǎn)A出發(fā),沿過點(diǎn)A與y軸平行的直線向下運(yùn)動(dòng),速度為每秒1個(gè)單位長度,點(diǎn)C的運(yùn)動(dòng)時(shí)間為t(0<t<12),連接BC,作BD⊥BC交x軸于點(diǎn)D,連接CD,①當(dāng)點(diǎn)C在雙曲線上時(shí),求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時(shí),請直接寫出t的值.23.(12分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN24.(14分)如圖所示,在?ABCD中,E是CD延長線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】
圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長為圓的直徑解答.2、B【解析】
根據(jù)圓周角得出∠AOB=60°,進(jìn)而利用弧長公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長==2π,故選B.【點(diǎn)睛】此題考查弧長的計(jì)算,關(guān)鍵是根據(jù)圓周角得出∠AOB=60°.3、C【解析】
連接AD,AM,由于△ABC是等腰三角形,點(diǎn)D是BC的中點(diǎn),故,在根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C,,推出,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點(diǎn)D是BC邊上的中點(diǎn)∴∴解得∵EF是線段AC的垂直平分線∴點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【點(diǎn)睛】本題考查了三角形線段長度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.4、D【解析】
先估算出的大致范圍,然后再計(jì)算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點(diǎn)睛】本題主要考查的是二次根式的混合運(yùn)算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.5、B【解析】試題分析:對(duì)于一元二次方程ax2+bx+c=0(a≠0),當(dāng)△=6、B【解析】
作PA⊥x軸于點(diǎn)A,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點(diǎn)A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是銳角三角函數(shù)的定義,解題關(guān)鍵是熟記三角函數(shù)的定義.7、B【解析】
,計(jì)算-1.732與-3,-2,-1的差的絕對(duì)值,確定絕對(duì)值最小即可.【詳解】,,,,因?yàn)?.268<0.732<1.268,所以表示的點(diǎn)與點(diǎn)B最接近,故選B.8、A【解析】
各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【點(diǎn)睛】本題考查了有理數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點(diǎn)睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.10、A【解析】
找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個(gè)長方形和一個(gè)小正方形,故選A.【點(diǎn)睛】本題考查了三視圖的知識(shí),主視圖是從物體的正面看得到的視圖.二、填空題(共7小題,每小題3分,滿分21分)11、y=【解析】解:設(shè)這個(gè)反比例函數(shù)的表達(dá)式為y=.∵P1(x1,y1),P2(x2,y2)是同一個(gè)反比例函數(shù)圖象上的兩點(diǎn),∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個(gè)反比例函數(shù)的解析式為:y=.故答案為y=.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,所有在反比例函數(shù)上的點(diǎn)的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).同時(shí)考查了式子的變形.12、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進(jìn)行計(jì)算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點(diǎn):代數(shù)式求值.13、(2,2).【解析】
連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點(diǎn)與圓的位置關(guān)系可得一個(gè)符合要求的點(diǎn)B的坐標(biāo).【詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點(diǎn),∴符合要求的點(diǎn)B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).【點(diǎn)睛】考查了點(diǎn)與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.14、【解析】
此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個(gè)二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點(diǎn)睛】考核知識(shí)點(diǎn):二次函數(shù)綜合題.熟記性質(zhì),數(shù)形結(jié)合是關(guān)鍵.15、【解析】
解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.16、【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).
詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,
∴x=3,
先對(duì)這組數(shù)據(jù)按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,
∴這組數(shù)的中位數(shù)是=1.
故答案為:1.點(diǎn)睛:本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).17、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點(diǎn),∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)1.【解析】
(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點(diǎn)睛】本題考查了切線的性質(zhì),解直角三角形的應(yīng)用,等腰三角形的判定等,綜合性較強(qiáng),正確添加輔助線、熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.19、(1)126;(2)作圖見解析(3)768【解析】試題分析:(1)根據(jù)扇形統(tǒng)計(jì)圖求出所占的百分比,然后乘以360°即可;(2)利用“查資料”人人數(shù)是40人,查資料”人占總?cè)藬?shù)40%,求出總?cè)藬?shù)100,再求出32人;(3)用部分估計(jì)整體.試題解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考點(diǎn):統(tǒng)計(jì)圖20、﹣1【解析】
根據(jù)乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)及立方根的定義依次計(jì)算各項(xiàng)后,再根據(jù)有理數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.【點(diǎn)睛】本題考查了乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算,熟知乘方的意義、絕對(duì)值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運(yùn)算順序是解決問題的關(guān)鍵.21、(1)見解析;(2)1【解析】
分析:(1)根據(jù)平行四邊形的判定與矩形的判定證明即可;(2)根據(jù)矩形的性質(zhì)和三角函數(shù)解答即可.詳解:(1)證明:∵CD⊥AB于點(diǎn)D,BE⊥AB于點(diǎn)B,∴.∴CD∥BE.又∵BE=CD,∴四邊形CDBE為平行四邊形.又∵,∴四邊形CDBE為矩形.(2)解:∵四邊形CDBE為矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.點(diǎn)睛:本題考查了矩形的判定與性質(zhì),關(guān)鍵是根據(jù)平行四邊形的判定與矩形的判定解答.22、(1)直線的表達(dá)式為,雙曲線的表達(dá)式為;(2)①;②當(dāng)時(shí),的大小不發(fā)生變化,的值為;③t的值為或.【解析】
(1)由點(diǎn)利用待定系數(shù)法可求出直線的表達(dá)式;再由直線的表達(dá)式求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達(dá)式;(2)①先求出點(diǎn)C的橫坐標(biāo),再將其代入雙曲線的表達(dá)式求出點(diǎn)C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點(diǎn)K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點(diǎn)共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點(diǎn)B作于M,先求出點(diǎn)D與點(diǎn)M重合的臨界位置時(shí)t的值,據(jù)此分和兩種情況討論:根據(jù)三點(diǎn)坐標(biāo)求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經(jīng)過點(diǎn)和∴將點(diǎn)代入得解得故直線的表達(dá)式為將點(diǎn)代入直線的表達(dá)式得解得∵雙曲線經(jīng)過點(diǎn),解得故雙曲線的表達(dá)式為;(2)①軸,點(diǎn)A的坐標(biāo)為∴點(diǎn)C的橫坐標(biāo)為12將其代入雙曲線的表達(dá)式得∴C的縱坐標(biāo)為,即由題意得,解得故當(dāng)點(diǎn)C在雙曲線上時(shí),t的值為;②當(dāng)時(shí),的大小不發(fā)生變化,求解過程如下:若點(diǎn)D與點(diǎn)A重合由題意知,點(diǎn)C坐標(biāo)為由兩點(diǎn)距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點(diǎn)D與點(diǎn)A不重合,且在點(diǎn)A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點(diǎn)K,連接AK、BK由(1)知,直線AB的表達(dá)式為令得,則,即點(diǎn)K為CD的中點(diǎn),(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點(diǎn)共圓,點(diǎn)K為圓心(圓周角定理);③過點(diǎn)B作于M由題意和②可知,點(diǎn)D在點(diǎn)A左側(cè),與點(diǎn)M重合是一個(gè)臨界位置此時(shí),四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當(dāng)時(shí),過點(diǎn)C作于N又,即由勾股定理得即解得或(不符題設(shè),舍去)當(dāng)時(shí),同理可得:解得或(不符題設(shè),舍去)綜上所述,t的值為或.【點(diǎn)睛】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點(diǎn)共圓、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題.23、(1)見解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長公式計(jì)算即可;(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 火災(zāi)調(diào)查應(yīng)急工作預(yù)案(3篇)
- 高考數(shù)學(xué)常見題型解法分享及答案
- 追求理想的高考作文思路及試題及答案
- 行政管理人際關(guān)系試題及答案
- 追求卓越的心態(tài)與行動(dòng)-高考作文考試試題及答案
- 火災(zāi)發(fā)生應(yīng)急預(yù)案演練(3篇)
- 2025年軟件考試焦點(diǎn)討論試題
- 防汛火災(zāi)等應(yīng)急預(yù)案(3篇)
- 競爭戰(zhàn)略與市場靈活性試題及答案
- 行政管理的組織形式與試題答案解析
- 市場部經(jīng)理崗位職責(zé)
- 信息繭房課件模板
- 花木蘭短劇劇本英文版
- 教育部研究生、本科、高職學(xué)科分類及專業(yè)目錄
- Unit+2+Lesson+3+Getting+To+The+Top 高中英語北師大版(2019)選擇性必修第一冊
- 查勘定損溝通談判技巧
- 籃球賽計(jì)分表模板
- 如何預(yù)防性侵害(公開課)
- boschqbasics博世價(jià)值流課件
- 鐵路勞動(dòng)合同書
- 新部編版四年級(jí)下冊語文閱讀理解專項(xiàng)訓(xùn)練(15篇)
評(píng)論
0/150
提交評(píng)論