




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有實數(shù)根,則k的取值范圍是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠02.函數(shù)與()在同一坐標(biāo)系中的圖象可能是()A. B. C. D.3.下列圖形是中心對稱圖形的是()A. B. C. D.4.從一定高度拋一個瓶蓋100次,落地后蓋面朝下的有55次,則下列說法中錯誤的是A.蓋面朝下的頻數(shù)是55B.蓋面朝下的頻率是0.55C.蓋面朝下的概率不一定是0.55D.同樣的試驗做200次,落地后蓋面朝下的有110次5.如圖,已知⊙O的內(nèi)接正六邊形ABCDEF的邊長為6,則弧BC的長為()A.2π B.3π C.4π D.π6.某校決定從三名男生和兩名女生中選出兩名同學(xué)擔(dān)任校藝術(shù)節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.如圖,在△ABC中,∠A=90°.若AB=12,AC=5,則cosC的值為()A. B. C. D.8.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(,4),則△AOC的面積為A.12 B.9 C.6 D.49.如圖,、、是小正方形的頂點,且每個小正方形的邊長為1,則的值為()A. B.1 C. D.10.如圖,△ABC是一張周長為18cm的三角形紙片,BC=5cm,⊙O是它的內(nèi)切圓,小明用剪刀在⊙O的右側(cè)沿著與⊙O相切的任意一條直線剪下△AMN,則剪下的三角形的周長為()A. B. C. D.隨直線的變化而變化二、填空題(每小題3分,共24分)11.把多項式分解因式的結(jié)果是__________.12.已知關(guān)于x的一元二次方程(a-1)x2-x+a2-1=0的一個根是0,那么a的值為.13.我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“圓中方形”問題:“今有圓田一段,中間有個方池,丈量田地待耕犁,恰好三分在記,池面至周有數(shù),每邊三步無疑,內(nèi)方圓徑若能知,堪作算中第一.”其大意為:有一塊圓形的田,中間有一塊正方形水池,測量出除水池外圓內(nèi)可耕地的面積恰好72平方步,從水池邊到圓周,每邊相距3步遠(yuǎn).如果你能求出正方形的邊長是x步,則列出的方程是_______________.14.120°的圓心角對的弧長是6π,則此弧所在圓的半徑是_____.15.已知x1、x2是關(guān)于x的方程x2+4x5=0的兩個根,則x1x2=_____.16.在中,,,,則____________17.如圖,練習(xí)本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,同一條直線上的三個點A、B、C都在橫格線上.若線段AB=6cm,則線段BC=____cm.18.如圖,在正方形和正方形中,點和點的坐標(biāo)分別為,,則兩個正方形的位似中心的坐標(biāo)是___________.三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.動點P,Q從點A同時出發(fā),點P沿AB向終點B運動;點Q沿AC→CB向終點B運動,速度都是1cm/s.當(dāng)一個點到達(dá)終點時,另一個點同時停止運動.設(shè)點P運動的時間為t(s),在運動過程中,點P,點Q經(jīng)過的路線與線段PQ圍成的圖形面積為S(cm2).(1)AC=_________cm;(2)當(dāng)點P到達(dá)終點時,BQ=_______cm;(3)①當(dāng)t=5時,s=_________;②當(dāng)t=9時,s=_________;(4)求S與t之間的函數(shù)解析式.20.(6分)如圖,拋物線y=ax2+x+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,2).(1)求拋物線的解析式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).21.(6分)如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.(1)求證:;(2)若AB=5,AD=8,求⊙O的半徑.22.(8分)如圖,在O中,,CD⊥OA于點D,CE⊥OB于點E.(1)求證:;(2)若∠AOB=120°,OA=2,求四邊形DOEC的面積.23.(8分)如圖,△ABC的邊BC在x軸上,且∠ACB=90°.反比例函數(shù)y=(x>0)的圖象經(jīng)過AB邊的中點D,且與AC邊相交于點E,連接CD.已知BC=2OB,△BCD的面積為1.(1)求k的值;(2)若AE=BC,求點A的坐標(biāo).24.(8分)國慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動付費方式:若人數(shù)不超過20人,人均繳費500元;若人數(shù)超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻(xiàn)突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?25.(10分)如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:(1)求證:CD是⊙O的切線;(2)若BC=3,CD=4,求平行四邊形OABC的面積.26.(10分)解方程:(1)x2﹣3x+1=0;(2)(x+1)(x+2)=2x+1.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)一元二次方程的定義和判別式的意義得到k≠1且△=22-4k×(-1)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當(dāng)△>1,方程有兩個不相等的實數(shù)根;當(dāng)△=1,方程有兩個相等的實數(shù)根;當(dāng)△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.2、D【分析】根據(jù)反比例函數(shù)與一次函數(shù)的圖象特點解答即可.【詳解】時,,在一、二、四象限,在一、三象限,無選項符合.時,,在一、三、四象限,()在二、四象限,只有D符合;故選:D.【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),關(guān)鍵是由的取值確定函數(shù)所在的象限.3、B【分析】根據(jù)中心對稱圖形的概念和各圖的性質(zhì)求解.【詳解】A、是軸對稱圖形,故此選項錯誤;B、是中心對稱圖形,故此選項正確;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】此題主要考查了中心對稱圖形的概念.要注意,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、D【分析】根據(jù)頻數(shù),頻率及用頻率估計概率即可得到答案.【詳解】A、蓋面朝下的頻數(shù)是55,此項正確;B、蓋面朝下的頻率是=0.55,此項正確;C、蓋面朝下的概率接近于0.55,但不一定是0.55,此項正確;D、同樣的試驗做200次,落地后蓋面朝下的在110次附近,不一定必須有110次,此項錯誤;故選:D.【點睛】本題考查了頻數(shù),頻率及用頻率估計概率,掌握知識點是解題關(guān)鍵.5、A【分析】連接OC、OB,求出圓心角∠AOB的度數(shù),再利用弧長公式解答即可.【詳解】解:連接OC、OB∵六邊形ABCDEF為正六邊形,∴∠COB==60°,∵OA=OB∴△OBC是等邊三角形,∴OB=OC=BC=6,弧BC的長為:.故選:A.【點睛】此題考查了扇形的弧長公式與多邊形的性質(zhì)相結(jié)合,構(gòu)思巧妙,利用了正六邊形的性質(zhì),解題的關(guān)鍵是掌握扇形的弧長公式.6、B【解析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.7、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故選A.8、B【解析】∵點,是中點∴點坐標(biāo)∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標(biāo)為-6又∵點在雙曲線∴點坐標(biāo)為∴從而,故選B9、C【分析】連接BC,AB=,BC=,AC=,得到△ABC是直角三角形,從而求解.【詳解】解:連接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故選:C.【點睛】本題考查直角三角形,勾股定理;熟練掌握在方格中利用勾股定理求邊長,同時判斷三角形形狀是解題的關(guān)鍵.10、B【分析】如圖,設(shè)E、F、G分別為⊙O與BC、AC、MN的切點,利用切線長定理得出BC=BD+CF,DM=MG,F(xiàn)N=GN,AD=AF,進(jìn)而可得答案.【詳解】設(shè)E、F、G分別為⊙O與BC、AC、MN的切點,∵⊙O是△ABC的內(nèi)切圓,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵M(jìn)N與⊙O相切于G,∴DM=MG,F(xiàn)N=GN,∵△ABC的周長為18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周長=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故選:B.【點睛】本題考查切線長定理,從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角;熟練掌握定理是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先提取公因數(shù)y,再利用完全平方公式化簡即可.【詳解】故答案為:.【點睛】本題考查了多項式的因式分解問題,掌握完全平方公式的性質(zhì)是解題的關(guān)鍵.12、-1【解析】試題分析:把代入方程,即可得到關(guān)于a的方程,再結(jié)合二次項系數(shù)不能為0,即可得到結(jié)果.由題意得,解得,則考點:本題考查的是一元二次方程的根即方程的解的定義點評:解答本題的關(guān)鍵是熟練掌握一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.同時注意一元二次方程的二次項系數(shù)不能為0.13、【分析】根據(jù)圓的面積-正方形的面積=可耕地的面積即可解答.【詳解】解:∵正方形的邊長是x步,圓的半徑為()步∴列方程得:.故答案為.【點睛】本題考查圓的面積計算公式,解題關(guān)鍵是找出等量關(guān)系.14、1【分析】根據(jù)弧長的計算公式l=,將n及l(fā)的值代入即可得出半徑r的值【詳解】解:根據(jù)弧長的公式l=,得到:6π=,解得r=1.故答案:1.【點睛】此題考查弧長的計算,掌握計算公式是解題關(guān)鍵15、-1【分析】根據(jù)根與系數(shù)的關(guān)系即可求解.【詳解】∵x1、x2是關(guān)于x的方程x2+1x5=0的兩個根,∴x1x2=-=-1,故答案為:-1.【點睛】此題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟知x1x2=-.16、【分析】根據(jù)題意利用三角函數(shù)的定義可以求得AC,再利用勾股定理可求得AB.【詳解】解:由題意作圖如下:∵∠C=90°,,,∴,∴.故答案為:.【點睛】本題主要考查三角函數(shù)的定義及勾股定理,熟練掌握三角函數(shù)的定義以及勾股定理是解題的關(guān)鍵.17、18【分析】根據(jù)已知圖形構(gòu)造相似三角形,進(jìn)而得出,即可求得答案.【詳解】如圖所示:過點A作平行線的垂線,交點分別為D、E,可得:,∴,即,解得:,∴,故答案為:.【點睛】本題主要考查了相似三角形的應(yīng)用,根據(jù)題意得出是解答本題的關(guān)鍵.18、或【分析】根據(jù)位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律,分兩種情況:一種是當(dāng)點E和C是對應(yīng)頂點,G和A是對應(yīng)頂點;另一種是A和E是對應(yīng)頂點,C和G是對應(yīng)頂點.【詳解】∵正方形和正方形中,點和點的坐標(biāo)分別為,∴(1)當(dāng)點E和C是對應(yīng)頂點,G和A是對應(yīng)頂點,位似中心就是EC與AG的交點.設(shè)AG所在的直線的解析式為解得∴AG所在的直線的解析式為當(dāng)時,,所以EC與AG的交點為(2)A和E是對應(yīng)頂點,C和G是對應(yīng)頂點.,則位似中心就是AE與CG的交點設(shè)AE所在的直線的解析式為解得∴AE所在的直線的解析式為設(shè)CG所在的直線的解析式為解得∴AG所在的直線的解析式為聯(lián)立解得∴AE與CG的交點為綜上所述,兩個正方形的位似中心的坐標(biāo)是或故答案為或【點睛】本題主要考查位似圖形,涉及了待定系數(shù)法求函數(shù)解析,求位似中心,正確分情況討論是解題的關(guān)鍵.三、解答題(共66分)19、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根據(jù)勾股定理求解即可;(2)先求出點P到達(dá)中點所需時間,則可知點Q運動路程,易得CQ長,;(3)①作PD⊥AC于D,可證△APD∽△ABC,利用相似三角形的性質(zhì)可得PD長,根據(jù)面積公式求解即可;②作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質(zhì)可得PE長,用可得s的值;(4)當(dāng)0<t≤8時,作PD⊥AC于D,可證△APD∽△ABC,可用含t的式子表示出PD的長,利用三角形面積公式可得s與t之間的函數(shù)解析式;當(dāng)8<t≤10時,作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質(zhì)可用含t的式子表示出PE長,用可得s與t之間的函數(shù)解析式.【詳解】解:(1)在Rt△ABC中,由勾股定理得(2)設(shè)點P運動到終點所需的時間為t,路程為AB=10cm,則點Q運動的路程為10cm,即cm所以當(dāng)點P到達(dá)終點時,BQ=4cm.(3)①作PD⊥AC于D,則∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如圖,作PE⊥AC于E,則∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)當(dāng)0<t≤8時,如圖①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.當(dāng)8<t≤10時,如圖②.作PE⊥AC于E.∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.綜上所述:【點睛】本題考查了二次函數(shù)在三角形動點問題中的應(yīng)用,涉及的知識點有勾股定理、相似三角形的判定與性質(zhì),靈活的應(yīng)用相似三角形對應(yīng)線段成比例的性質(zhì)求線段長是解題的關(guān)鍵.20、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)【解析】(1)利用待定系數(shù)法轉(zhuǎn)化為解方程組即可.(2)如圖1中,分兩種情形討論①當(dāng)CP=CD時,②當(dāng)DP=DC時,分別求出點P坐標(biāo)即可.(3)如圖2中,作CM⊥EF于M,設(shè)則(0≤a≤4),根據(jù)S四邊形CDBF=S△BCD+S△CEF+S△BEF構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)由題意解得∴二次函數(shù)的解析式為(2)存在.如圖1中,∵C(0,2),∴CD=當(dāng)CP=CD時,當(dāng)DP=DC時,綜上所述,滿足條件的點P坐標(biāo)為或或(3)如圖2中,作CM⊥EF于M,∵B(4,0),C(0,2),∴直線BC的解析式為設(shè)∴(0≤a≤4),∵S四邊形CDBF=S△BCD+S△CEF+S△BEF,∴a=2時,四邊形CDBF的面積最大,最大值為,∴E(2,1).【點睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、待定系數(shù)法,四邊形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.21、(1)證明見解析;(2)⊙O的半徑為【分析】(1)連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;(2)根據(jù)垂徑定理和勾股定理求解.【詳解】解:(1)連接OB,交AD于點E.∵BC是⊙O的切線,切點為B,∴OB⊥BC.∴∠OBC=90°∵四邊形ABCD是平行四邊形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE過圓心O∴(2)∵OE⊥AD,OE過圓心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,設(shè)⊙O的半徑為r,則OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半徑為【點睛】掌握垂徑定理和勾股定理是本題的解題關(guān)鍵.22、(1)詳見解析;(2)【分析】(1)連接OC,由AC=BC,可得∠AOC=∠BOC,又CD⊥OA,CE⊥OB,由角平分線定理可得CD=CE;(2)由∠AOB=120°,∠AOC=∠BOC,可得∠AOC=60°,又∠CDO=90°,得∠OCD=30°,可得,由勾股定理可得,可得;同理可得,進(jìn)而求出.【詳解】(1)證明:連接OC.∵AC=BC,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴CD=CE.(2)解:∵∠AOB=120°,∠AOC=∠BOC,∴∠AOC=60°.∵∠CDO=90°,∴∠OCD=30°,∵OC=OA=2,∴.∴,∴,同理可得,∴.【點睛】本題主要考查了圓心角與弧的關(guān)系,角平分線的性質(zhì),勾股定理以及面積計算,熟練掌握圓中的相關(guān)定理是解題的關(guān)鍵.23、(1)k=12;(2)A(1,1).【解析】(1)連接OD,過D作DF⊥OC于F,依據(jù)∠ACB=90°,D為AB的中點,即可得到CD=AB=BD,進(jìn)而得出BC=2BF=2CF,依據(jù)BC=2OB,即可得到OB=BF=CF,進(jìn)而得出k=xy=OF?DF=BC?DF=2S△BCD=12;(2)設(shè)OB=m,則OF=2m,OC=3m,DF=,進(jìn)而得到E(3m,-2m),依據(jù)3m(-2m)=12,即可得到m=2,進(jìn)而得到A(1,1).【詳解】解:(1)如圖,連接OD,過D作DF⊥OC于F,∵∠ACB=90°,D為AB的中點,∴CD=AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF?DF=BC?DF=2S△BCD=12;(2)設(shè)OB=m,則OF=2m,OC=3m,DF=,∵DF是△ABC的中位線,∴AC=2DF=,又∵AE=BC=2m,∴CE=AC-AE=-2m,∴E(3m,-2m),∵3m(-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,解題時注意:反比例函數(shù)圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.24、30【分析】設(shè)該單位一共組織了x位職工參加旅游觀光活動,求出當(dāng)人數(shù)為20時的總費用及人均收費10元時的人數(shù),即可得出20<x<1,再利用總費用=人數(shù)×人均收費,即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:設(shè)該單位一共組織了x位職工參加旅游觀光活動,∵500×20=10000(元),10000<12000,(500﹣10)=15(人),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 過敏性休克護(hù)理
- 重慶節(jié)約用電協(xié)議書
- 餐飲合作配送協(xié)議書
- 超市無償轉(zhuǎn)讓協(xié)議書
- 酒店廚房員工協(xié)議書
- 輕卡銷售合同協(xié)議書
- 茶葉合作商家協(xié)議書
- 兩人合伙開公司協(xié)議書
- 集體財產(chǎn)安全協(xié)議書
- 落戶簽約服務(wù)協(xié)議書
- 人民警察初級執(zhí)法資格考試題庫題庫(1491道)
- IATF16949-2016質(zhì)量管理體系全套文件(質(zhì)量手冊控制程序表單文件)
- 115個低風(fēng)險組病種目錄
- 新編劍橋商務(wù)英語中級的課件
- Oracle采購管理解決方案
- 優(yōu)秀校友推薦表
- 班主任到場簽到表
- 三菱電梯維修調(diào)試資料:GPS2故障代碼
- 水電解制氫設(shè)備操作使用手冊
- 天臺宗哲學(xué)討論(下)課堂報告
- 學(xué)齡前兒童、老年人、特殊人群營養(yǎng)與膳食
評論
0/150
提交評論