




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
考向29數(shù)列求和1.(2021·浙江高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】顯然可知,SKIPIF1<0,利用倒數(shù)法得到SKIPIF1<0,再放縮可得SKIPIF1<0,由累加法可得SKIPIF1<0,進(jìn)而由SKIPIF1<0局部放縮可得SKIPIF1<0,然后利用累乘法求得SKIPIF1<0,最后根據(jù)裂項(xiàng)相消法即可得到SKIPIF1<0,從而得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0根據(jù)累加法可得,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),由裂項(xiàng)求和法得:所以SKIPIF1<0,即SKIPIF1<0.故選:A.【點(diǎn)睛】本題解題關(guān)鍵是通過倒數(shù)法先找到SKIPIF1<0的不等關(guān)系,再由累加法可求得SKIPIF1<0,由題目條件可知要證SKIPIF1<0小于某數(shù),從而通過局部放縮得到SKIPIF1<0的不等關(guān)系,改變不等式的方向得到SKIPIF1<0,最后由裂項(xiàng)相消法求得SKIPIF1<0.2.(2011·全國(guó)高考真題(理))等比數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)題意列出方程組,求出首項(xiàng)與公比,即可求出等比數(shù)列的通項(xiàng)公式即可;(2)由an=SKIPIF1<0化簡(jiǎn)bn=log3a1+log3a2+…+log3an,可得到bn的通項(xiàng)公式,求出SKIPIF1<0的通項(xiàng)公式,利用裂項(xiàng)相消法求和.【詳解】(1)設(shè)數(shù)列{an}的公比為q,由SKIPIF1<0=9a2a6得SKIPIF1<0=9SKIPIF1<0,所以q2=SKIPIF1<0.由條件可知q>0,故q=SKIPIF1<0.由2a1+3a2=1得2a1+3a1q=1,所以a1=SKIPIF1<0.故數(shù)列{an}的通項(xiàng)公式為an=SKIPIF1<0.(2)bn=log3a1+log3a2+…+log3an=-(1+2+…+n)=-SKIPIF1<0.故SKIPIF1<0.SKIPIF1<0所以數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<01.非等差、等比數(shù)列的一般數(shù)列求和,主要有兩種思想(1)轉(zhuǎn)化的思想,即將一般數(shù)列設(shè)法轉(zhuǎn)化為等差或等比數(shù)列,這一思想方法往往通過通項(xiàng)分解或錯(cuò)位相消來完成;(2)不能轉(zhuǎn)化為等差或等比的特殊數(shù)列,往往通過裂項(xiàng)相消法、錯(cuò)位相減法、倒序相加法等來求和.2.解答數(shù)列應(yīng)用題的步驟(1)審題——仔細(xì)閱讀材料,認(rèn)真理解題意.(2)建?!獙⒁阎獥l件翻譯成數(shù)學(xué)(數(shù)列)語言,將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,弄清該數(shù)列的特征、要求的是什么.(3)求解——求出該問題的數(shù)學(xué)解.(4)還原——將所求結(jié)果還原到實(shí)際問題中.1.特殊數(shù)列的求和公式(1)等差數(shù)列的前n項(xiàng)和公式:Sn=eq\f(n(a1+an),2)=na1+eq\f(n(n-1),2)d.(2)等比數(shù)列的前n項(xiàng)和公式:Sn=eq\b\lc\{(\a\vs4\al\co1(na1,q=1,,\f(a1-anq,1-q)=\f(a1(1-qn),1-q),q≠1.))2.數(shù)列求和的幾種常用方法(1)分組轉(zhuǎn)化法把數(shù)列的每一項(xiàng)分成兩項(xiàng)或幾項(xiàng),使其轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列,再求解.(2)裂項(xiàng)相消法把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得其和.(3)錯(cuò)位相減法如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,這個(gè)數(shù)列的前n項(xiàng)和可用錯(cuò)位相減法求解.(4)倒序相加法如果一個(gè)數(shù)列{an}的前n項(xiàng)中與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法求解.【知識(shí)拓展】數(shù)列應(yīng)用題常見模型(1)等差模型:如果后一個(gè)量比前一個(gè)量增加(或減少)的是同一個(gè)固定值,該模型是等差模型,增加(或減少)的量就是公差.(2)等比模型:如果后一個(gè)量與前一個(gè)量的比是同一個(gè)固定的非零常數(shù),該模型是等比模型,這個(gè)固定的數(shù)就是公比.(3)遞推數(shù)列模型:如果題目中給出的前后兩項(xiàng)之間的關(guān)系不固定,隨項(xiàng)的變化而變化,應(yīng)考慮an與an+1(或者相鄰三項(xiàng)等)之間的遞推關(guān)系,或者Sn與Sn+1(或者相鄰三項(xiàng)等)之間的遞推關(guān)系.1.(2021·南昌市豫章中學(xué)高三開學(xué)考試(理))已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2,記數(shù)列SKIPIF1<0的前n項(xiàng)和為Tn,n∈N*.則使得T20的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國(guó)高三專題練習(xí)(理))設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,S7=35,將a3,a7,a11,a15中去掉一項(xiàng)后,剩下的三項(xiàng)按原來的順序恰為等比數(shù)列{bn}的前三項(xiàng),則數(shù)列{anbn}的前10項(xiàng)的和T10=()A.10SKIPIF1<0212 B.9SKIPIF1<0212 C.11SKIPIF1<0212 D.12SKIPIF1<02123.(2021·南昌市豫章中學(xué)高二開學(xué)考試(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和等于_______.4.(2022·全國(guó)高三專題練習(xí))已知SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如:SKIPIF1<0,SKIPIF1<0在數(shù)列SKIPIF1<0中,SKIPIF1<0,記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,則SKIPIF1<0___________.1.(2021·全國(guó)高三(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0),且SKIPIF1<0中任何一項(xiàng)都不為SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國(guó)高三專題練習(xí)(文))我們把SKIPIF1<0SKIPIF1<0叫“費(fèi)馬數(shù)”(費(fèi)馬是十七世紀(jì)法國(guó)數(shù)學(xué)家).設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則使不等式SKIPIF1<0成立的正整數(shù)SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)高三專題練習(xí))設(shè)數(shù)列{an}滿足SKIPIF1<0,若SKIPIF1<0,且數(shù)列{bn}的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·江蘇南京師大附中)已知SKIPIF1<0為虛數(shù)單位,則復(fù)數(shù)SKIPIF1<0的虛部為()A.SKIPIF1<0 B.SKIPIF1<0 C.1010 D.10115.(2021·浙江高三開學(xué)考試)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.則SKIPIF1<0()A.0 B.SKIPIF1<0 C.21 D.226.(2022·全國(guó)高三專題練習(xí)(文))已知等差數(shù)列SKIPIF1<0中,SKIPIF1<0,公差大于0,且SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng),設(shè)SKIPIF1<0,則數(shù)列SKIPIF1<0的前2020項(xiàng)和為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2021·全國(guó)高三)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列表達(dá)式SKIPIF1<0的值為____________.8.(2022·全國(guó)高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的最小值為_______________.9.(2021·云南昆明市·高三(文))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0及SKIPIF1<0;(2)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.10.(2021·吉林長(zhǎng)春市·高三(理))設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等差數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.11.(2021·樂清市知臨中學(xué)高三月考)已知數(shù)列SKIPIF1<0和SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求滿足SKIPIF1<0的正整數(shù)SKIPIF1<0的值.12.(2021·全國(guó))已知數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.1.(2012·四川高考真題(理))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2012·上海高考真題(理))設(shè),.在中,正數(shù)的個(gè)數(shù)是()A.25. B.50. C.75. D.100.3.(2011·安徽高考真題(文))若數(shù)列SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2015·江蘇高考真題)數(shù)列滿足,且(),則數(shù)列的前10項(xiàng)和為_______.5.(2012·福建高考真題(理))數(shù)列{an}的通項(xiàng)公式SKIPIF1<0,前n項(xiàng)和為Sn,則S2012=___________6.(2021·全國(guó)高考真題)某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)稱軸把紙對(duì)折,規(guī)格為SKIPIF1<0的長(zhǎng)方形紙,對(duì)折1次共可以得到SKIPIF1<0,SKIPIF1<0兩種規(guī)格的圖形,它們的面積之和SKIPIF1<0,對(duì)折2次共可以得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種規(guī)格的圖形,它們的面積之和SKIPIF1<0,以此類推,則對(duì)折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對(duì)折SKIPIF1<0次,那么SKIPIF1<0______SKIPIF1<0.7.(2015·天津高考真題(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0成等差數(shù)列.(Ⅰ)求SKIPIF1<0的值和SKIPIF1<0的通項(xiàng)公式;(Ⅱ)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.8.(2012·江西高考真題(理))已知數(shù)列{an}的前n項(xiàng)和SKIPIF1<0,且Sn的最大值為8.(1)確定常數(shù)k,求an;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和Tn.9.(2014·浙江高考真題(理))已知數(shù)列和滿足.若為等比數(shù)列,且(1)求與;(2)設(shè).記數(shù)列的前項(xiàng)和為.(i)求;(ii)求正整數(shù),使得對(duì)任意,均有.10.(2013·安徽高考真題(文))設(shè)數(shù)列滿足,,且對(duì)任意,函數(shù)滿足(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.1.【答案】C【分析】根據(jù)SKIPIF1<0聯(lián)系到通項(xiàng)與前n項(xiàng)和公式的關(guān)系SKIPIF1<0,求出SKIPIF1<0,根據(jù)式子特點(diǎn),求前n項(xiàng)和用裂項(xiàng)相消法,即可求出T20?!驹斀狻坑蒘KIPIF1<0可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,作差可得SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,符合SKIPIF1<0,那么SKIPIF1<0.SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:C2.【答案】A【分析】先設(shè)等差數(shù)列的公差SKIPIF1<0,根據(jù)公式求SKIPIF1<0和SKIPIF1<0,判斷SKIPIF1<0是等比數(shù)列{bn}的前三項(xiàng),再求得公比和SKIPIF1<0,代入計(jì)算SKIPIF1<0,最后利用錯(cuò)位相減法求SKIPIF1<0即可.【詳解】設(shè)等差數(shù)列{an}的公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0,即SKIPIF1<0,由題意知,SKIPIF1<0是等比數(shù)列{bn}的前三項(xiàng),即SKIPIF1<0,公比SKIPIF1<0,故SKIPIF1<0.故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩式作差得,SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:A.3.【答案】SKIPIF1<0【分析】推導(dǎo)出數(shù)列SKIPIF1<0是每項(xiàng)均為SKIPIF1<0的常數(shù)列,數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,然后利用分組求和法可求得數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和.【詳解】SKIPIF1<0,SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以,數(shù)列SKIPIF1<0是每項(xiàng)均為SKIPIF1<0的常數(shù)列,數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于SKIPIF1<0結(jié)構(gòu),利用分組求和法;(4)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,公差為SKIPIF1<0,則SKIPIF1<0,利用裂項(xiàng)相消法求和.4.【答案】4956【分析】首先分別計(jì)算當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0的數(shù)值,再求SKIPIF1<0即可.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<01.【答案】D【分析】由SKIPIF1<0得SKIPIF1<0,從而SKIPIF1<0,再由SKIPIF1<0即可求出SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.2.【答案】B【分析】求得SKIPIF1<0,利用等比數(shù)列的求和公式可求得SKIPIF1<0,利用分組求和法可求得SKIPIF1<0,由已知條件可得出關(guān)于SKIPIF1<0的不等式,即可得解.【詳解】SKIPIF1<0,則SKIPIF1<0,故數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,則SKIPIF1<0,所以,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:B.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于SKIPIF1<0結(jié)構(gòu),利用分組求和法;(4)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,公差為SKIPIF1<0,則SKIPIF1<0,利用裂項(xiàng)相消法求和.3.【答案】D【分析】由已知可求得SKIPIF1<0,再利用裂項(xiàng)相消法可求得.【詳解】由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則可得數(shù)列SKIPIF1<0為常數(shù)列0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.故選:D.4.【答案】B【分析】用錯(cuò)位相減法求得復(fù)數(shù)SKIPIF1<0后可得虛部.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,相減得SKIPIF1<0,所以SKIPIF1<0,虛部為SKIPIF1<0.故選:B.5.【答案】A【分析】根據(jù)題意變形可得SKIPIF1<0,根據(jù)累加法求出SKIPIF1<0,SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,所以SKIPIF1<0,所以周期SKIPIF1<0,所以SKIPIF1<0即可得解.【詳解】由SKIPIF1<0可得SKIPIF1<0,通過累加法可得:SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<020,SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,所以SKIPIF1<0,所以周期SKIPIF1<0,由SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,故選:A.【點(diǎn)睛】本題考查了利用累加法求數(shù)列通項(xiàng),考查了裂項(xiàng)相消法,同時(shí)考查了利用函數(shù)對(duì)稱性求周期,有一定的計(jì)算量,屬于中檔題.本題的關(guān)鍵點(diǎn)有:(1)累加法求通項(xiàng);(2)裂項(xiàng)相消法求和;(3)函數(shù)利用對(duì)稱性求周期.6.【答案】D【分析】利用等比中項(xiàng)求出通項(xiàng)SKIPIF1<0,再利用裂項(xiàng)相消法得解【詳解】等差數(shù)列SKIPIF1<0中,SKIPIF1<0,公差大于0,設(shè)公差為SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng)SKIPIF1<0;SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0設(shè)數(shù)列SKIPIF1<0的前2020項(xiàng)和為SKIPIF1<0SKIPIF1<0故選:D【點(diǎn)睛】正確運(yùn)用裂項(xiàng)相消法求和是解題關(guān)鍵.用裂項(xiàng)法求和的裂項(xiàng)原則及規(guī)律(1)裂項(xiàng)原則:一般是前邊裂幾項(xiàng),后邊就裂幾項(xiàng)直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止.(2)消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾.7.【答案】SKIPIF1<0【分析】依次求得SKIPIF1<0,由此求得所求表達(dá)式的值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<08.【答案】1【分析】由題意,可得SKIPIF1<0,轉(zhuǎn)化SKIPIF1<0為SKIPIF1<0,可得SKIPIF1<0,結(jié)合SKIPIF1<0的范圍即得解.【詳解】由SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.由題意可知SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為遞增數(shù)列.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的最小值為1.【點(diǎn)睛】本題考查了數(shù)列的遞推公式以及裂項(xiàng)求和法,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題9.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由已知可得SKIPIF1<0,解方程組求出SKIPIF1<0,從而可求出SKIPIF1<0及SKIPIF1<0;(2)由(1)可得SKIPIF1<0,然后利用分組求和與裂項(xiàng)相消法求SKIPIF1<0【詳解】解:(1)由題意,設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.10.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)推導(dǎo)出SKIPIF1<0,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求得SKIPIF1<0,利用錯(cuò)位相減法可求得SKIPIF1<0.【詳解】(1)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,有SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列.(2)由(1)知SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,①①SKIPIF1<0,得SKIPIF1<0,②①SKIPIF1<0②得,SKIPIF1<0,所以SKIPIF1<0.11.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0.【分析】(1)推導(dǎo)出數(shù)列SKIPIF1<0為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得SKIPIF1<0的通項(xiàng)公式,即可得出SKIPIF1<0的通項(xiàng)公式,利用裂項(xiàng)求和法可求得SKIPIF1<0的通項(xiàng)公式;(2)利用錯(cuò)位相減法結(jié)合分組求和法可求得SKIPIF1<0,根據(jù)已知條件可得出關(guān)于SKIPIF1<0的二次不等式,結(jié)合SKIPIF1<0可得出SKIPIF1<0的取值.【詳解】(1)對(duì)任意的SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以,數(shù)列SKIPIF1<0是等比數(shù)列,且首項(xiàng)和公比均為SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以,SKIPIF1<0SKIPIF1<0;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,上式SKIPIF1<0下式,得SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0或SKIPIF1<0.12.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)利用等差數(shù)列基本量的關(guān)系即可求解SKIPIF1<0的通項(xiàng)公式;(2)利用分組求和?等比數(shù)列求和?裂項(xiàng)相消法求和即可求解.【詳解】(1)由SKIPIF1<0得SKIPIF1<0.設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0.(2)由(1)得SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.1.【答案】D【詳解】∵數(shù)列{an}是公差為的等差數(shù)列,且SKIPIF1<0∴∴即得∴SKIPIF1<0[點(diǎn)評(píng)]本題難度較大,綜合性很強(qiáng).突出考查了等差數(shù)列性質(zhì)和三角函數(shù)性質(zhì)的綜合使用,需考生加強(qiáng)知識(shí)系統(tǒng)、網(wǎng)絡(luò)化學(xué)習(xí).另外,隱蔽性較強(qiáng),需要考生具備一定的觀察能力.2.【答案】D【詳解】由于f(n)=sinSKIPIF1<0的周期T=50由正弦函數(shù)性質(zhì)可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sinSKIPIF1<0,sinSKIPIF1<0…但是f(n)=SKIPIF1<0單調(diào)遞減a26…a50都為負(fù)數(shù),但是|a25|<a1,|a26|<a2,…,|a49|<a24∴
S1,S2,…,S25中都為正,而s26,s27,…,s50都為正同理S1,S2,…,s75都為正,S1,S2,…,s75,…,s100都為正,故選D3.【答案】A【分析】根據(jù)通項(xiàng)公式求出前十項(xiàng),由此求得前十項(xiàng)的和.【詳解】由于SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選A.【點(diǎn)睛】本小題主要考查數(shù)列求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4.【答案】SKIPIF1<0【解析】試題分析::∵數(shù)列滿足,且(),∴當(dāng)n≥2時(shí),.當(dāng)n=1時(shí),上式也成立,∴SKIPIF1<0.∴SKIPIF1<0.∴數(shù)列的前n項(xiàng)的和SKIPIF1<0∴數(shù)列的前10項(xiàng)的和為SKIPIF1<0考點(diǎn):數(shù)列求通項(xiàng)公式求和5.【答案】3018【解析】SKIPIF1<0【考點(diǎn)定位】本題主要考察數(shù)列的項(xiàng)、前n項(xiàng)和,考查數(shù)列求和能力.此類問題關(guān)鍵是并項(xiàng)求和6.【答案】5SKIPIF1<0【分析】(1)按對(duì)折列舉即可;(2)根據(jù)規(guī)律可得SKIPIF1<0,再根據(jù)錯(cuò)位相減法得結(jié)果.【詳解】(1)由對(duì)折2次共可以得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種規(guī)格的圖形,所以對(duì)著三次的結(jié)果有:SKIPIF1<0,共4種不同規(guī)格(單位SKIPIF1<0;故對(duì)折4次可得到如下規(guī)格:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,共5種不同規(guī)格;(2)由于每次對(duì)著后的圖形的面積都減小為原來的一半,故各次對(duì)著后的圖形,不論規(guī)格如何,其面積成公比為SKIPIF1<0的等比數(shù)列,首項(xiàng)為120SKIPIF1<0,第n次對(duì)折后的圖形面積為SKIPIF1<0,對(duì)于第n此對(duì)折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為SKIPIF1<0種(證明從略),故得猜想SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,兩式作差得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于SKIPIF1<0結(jié)構(gòu),利用分組求和法;(4)對(duì)于SKIPIF1<0結(jié)構(gòu),其中SKIPIF1<0是等差數(shù)列,公差為SKIPIF1<0,則SKIPIF1<0,利用裂項(xiàng)相消法求和.7.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0.【詳解】(Ⅰ)由已知,有SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0(Ⅱ)由(Ⅰ)得SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CNFA 023-2023綠色設(shè)計(jì)產(chǎn)品評(píng)價(jià)技術(shù)規(guī)范室內(nèi)用石材家具
- T/CITS 0006-2023醫(yī)用核酸質(zhì)譜應(yīng)用技術(shù)通則
- T/CIS 11003-2021紅外額溫計(jì)
- T/CHTS 10041-2021瀝青混合料垂直振動(dòng)成型試驗(yàn)方法
- T/CHC 115.5-2021 T/CAS 115.5-2021保健紡織品第5部分:遠(yuǎn)紅外
- T/CERDS 3-2022企業(yè)ESG評(píng)價(jià)體系
- T/CECS 10309-2023一體化智能截流井
- T/CECS 10267-2023高模量聚丙烯一體化預(yù)制泵站
- T/CECS 10028-2019綠色建材評(píng)價(jià)鋼結(jié)構(gòu)房屋用鋼構(gòu)件
- T/CCSAS 047-2023危險(xiǎn)化學(xué)品編碼與標(biāo)識(shí)技術(shù)規(guī)范
- 2025屆天津市蘆臺(tái)一中高三一模-化學(xué)試卷
- 蘇教版數(shù)學(xué)一年級(jí)下冊(cè)(2024)第七單元觀察物體(一)綜合素養(yǎng)測(cè)評(píng) A 卷(含答案)
- 市政道路工程施工組織設(shè)計(jì)方案
- 活動(dòng)策劃服務(wù)投標(biāo)方案(技術(shù)方案)
- 2024年版豬場(chǎng)員工勞動(dòng)合同模板3篇
- Unit 6 Section A 1a-2c 說課課件2024-2025學(xué)年人教版英語八年級(jí)下冊(cè)
- 2024年中國(guó)養(yǎng)老產(chǎn)業(yè)商學(xué)研究報(bào)告-銀發(fā)經(jīng)濟(jì)專題
- 保衛(wèi)管理員三級(jí)練習(xí)題
- DBJ51T033-2014 四川省既有建筑電梯增設(shè)及改造技術(shù)規(guī)程
- 武昌實(shí)驗(yàn)中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析
- 養(yǎng)老護(hù)理員培訓(xùn)課程內(nèi)容(范本)
評(píng)論
0/150
提交評(píng)論