福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省仙游縣2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=12.已知函數(shù)對于任意的滿足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.3.已知雙曲線的對稱軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或4.設(shè)數(shù)列的前項和為,且,則()A. B.C. D.5.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.6.函數(shù)在點處的切線方程的斜率是()A. B.C. D.7.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.8.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.9.某軟件研發(fā)公司對某軟件進行升級,主要是對軟件程序中的某序列重新編輯,編輯新序列為,它的第項為,若序列的所有項都是1,且,.記數(shù)列的前項和、前項積分別為,,若,則的最小值為()A.2 B.3C.4 D.510.拋物線的焦點坐標(biāo)是A. B.C. D.11.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.12.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的左、右焦點為,,直線與雙曲線交于兩點,且,為坐標(biāo)原點,又,則該雙曲線的離心率為__________.14.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______15.已知圓C:和點,若點N為圓C上一動點,點Q為平面上一點且,則Q點縱坐標(biāo)的最大值為______16.已知點,平面過原點,且垂直于向量,則點到平面的距離是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,證明:當(dāng)時,.18.(12分)設(shè)函數(shù)(I)求曲線在點處的切線方程;(II)設(shè),若函數(shù)有三個不同零點,求c的取值范圍19.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(1,f(1))處的切線斜率為﹣3,且x=2時y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值20.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.21.(12分)已知三角形的三個頂點,求邊所在直線的方程,以及該邊上中線所在直線的方程22.(10分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.2、C【解析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C3、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎(chǔ)題.4、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時,.當(dāng)時,.故選:C.5、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A6、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D7、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題8、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標(biāo)為.同理可得,點的坐標(biāo)為.故的面積為,選C.9、C【解析】先利用序列的所有項都是1,得到,整理后得到是等比數(shù)列,進而求出公比和首項,從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因為,,所以,又序列的所有項都是1,所以它的第項,所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.10、D【解析】根據(jù)拋物線的焦點坐標(biāo)為可知,拋物線即的焦點坐標(biāo)為,故選D.考點:拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).11、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.12、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直線和雙曲線的對稱性,結(jié)合圓的性質(zhì)、雙曲線的定義、三角形面積公式、雙曲線離心率公式進行求解即可.【詳解】由直線與雙曲線的對稱性可知,點與點關(guān)于原點對稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點,不妨設(shè)在第一象限,,因為圓是以為直徑,所以圓的半徑為,因為點在圓上,也在雙曲線上,所以有,聯(lián)立化簡可得,整理得,,所以,由所以,又因為,聯(lián)立可得,,因為為圓的直徑,所以,即,,所以離心率.故答案為:【點睛】關(guān)鍵點睛:利用直線和雙曲線的對稱性,結(jié)合圓的性質(zhì)進行求解是解題的關(guān)鍵.14、##【解析】作直線l,拋物線準(zhǔn)線且交y軸于A點,根據(jù)拋物線定義有,進而判斷目標(biāo)式最小時的位置關(guān)系,結(jié)合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準(zhǔn)線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標(biāo)式最小,即最小,當(dāng)共線時,又,此時.故答案為:.15、【解析】設(shè)出點N的坐標(biāo),探求出點Q的軌跡,再求出軌跡上在x軸上方且距離x軸最遠(yuǎn)的點的縱坐標(biāo)表達式,借助函數(shù)最值計算作答.【詳解】圓C:的圓心,半徑,圓C與x軸相切,依題意,點M在圓C上,設(shè)點,則,線段MN中點,因,則點Q的軌跡是以線段MN為直徑的圓(除點M,N外),這個軌跡在x軸上方,于是得這個軌跡上的點到x軸的最大距離為:令,于是得,當(dāng),即時,,所以Q點縱坐標(biāo)的最大值為.故答案為:【點睛】結(jié)論點睛:圓上的點到定直線距離的最大值等于圓心到該直線距離加半徑.16、【解析】確定,,利用點到平面的距離為,即可求得結(jié)論.【詳解】由題意,,,設(shè)與的夾角為,則所以點到平面的距離為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)利用前n項和與的關(guān)系即求;(2)由題知,然后利用裂項相消法即證.【小問1詳解】由,可得,兩式相減可得,當(dāng)時,,滿足,所以.【小問2詳解】∵,因為,所以當(dāng)時,.18、(1)(2)【解析】(1)由導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點斜式寫切線方程;(2)由函數(shù)圖像可知,極大值大于零且極小值小于零,解不等式可得c的取值范圍試題解析:解:(I)由,得因為,,所以曲線在點處的切線方程為(II)當(dāng)時,,所以令,得,解得或與在區(qū)間上的情況如下:所以,當(dāng)且時,存在,,,使得由的單調(diào)性知,當(dāng)且僅當(dāng)時,函數(shù)有三個不同零點19、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時,f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當(dāng)0<x<1時,f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣320、(1)(2)【解析】(1)利用正弦定理、余弦定理化簡已知條件,求得,由此求得.(2)先求得,結(jié)合兩角差的正弦公式求得.【小問1詳解】,,即,,,.【小問2詳解】由,可得,.21、;【解析】根據(jù)兩點式方程和中點坐標(biāo)公式求解,并化為一般式方程即可.【詳解】解:過的兩點式方程為,整理得即邊所在直線的方程為,邊上的中線是頂點A與邊中點M所連線段,由中點坐標(biāo)公式可得點M的坐標(biāo)為,即過,的直線的方程為,即整理得所以邊上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論