




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.在下列函數(shù)中,既是奇函數(shù)并且定義域為是()A. B.C. D.2.已知定義在R上的奇函數(shù)f(x)滿足,當時,,則()A. B.C. D.3.已知,那么下列結論正確的是()A. B.C. D.4.函數(shù)f(x)圖象大致為()A. B.C. D.5.如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是()A.相交 B.平行C.異面 D.以上都有可能6.已知角的終邊過點,則()A. B.C. D.7.點關于直線的對稱點是A. B.C. D.8.函數(shù)y=的單調增區(qū)間為A.(-,) B.(,+)C.(-1,] D.[,4)9.下列各題中,p是q的充要條件的是()A.p:,q:B.p:,q:C.p:四邊形是正方形,q:四邊形的對角線互相垂直且平分D.p:兩個三角形相似,q:兩個三角形三邊成比例10.“是”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.函數(shù)恒過定點為__________12.求值:__________.13.設三棱錐的三條側棱兩兩垂直,且,則三棱錐的體積是______14.設集合,對其子集引進“勢”的概念;①空集的“勢”最小;②非空子集的元素越多,其“勢”越大;③若兩個子集的元素個數(shù)相同,則子集中最大的元素越大,子集的“勢”就越大.最大的元素相同,則第二大的元素越大,子集的“勢”就越大,以此類推.若將全部的子集按“勢”從小到大順序排列,則排在第位的子集是_________.15.函數(shù)在區(qū)間上的值域是_____.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.化簡并求值(1)求的值.(2)已知,且是第三象限角,求的值.17.已知函數(shù)(1)求的最大值,并寫出取得最大值時自變量的集合;(2)把曲線向左平移個單位長度,然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變),得到函數(shù)的圖象,求在上的單調遞增區(qū)間.18.已知定義域為的函數(shù)是奇函數(shù).(1)求實數(shù)的值;(2)判斷的單調性并用定義證明;(3)已知不等式恒成立,求實數(shù)的取值范圍.19.已知點,,,.(1)若,求的值;(2)若,求的值.20.如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.(I)證明:AM⊥PM;(II)求二面角P-AM-D的大小.21.已知函數(shù)的定義域為,且對一切,,都有,當時,總有.(1)求的值;(2)證明:是定義域上的減函數(shù);(3)若,解不等式.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】分別判斷每個函數(shù)的定義域和奇偶性即可.【詳解】對A,的定義域為,故A錯誤;對B,是偶函數(shù),故B錯誤;對C,令,的定義域為,且,所以為奇函數(shù),故C正確.對D,的定義域為,故D錯誤.故選:C.2、B【解析】由題意得,因為,則,所以函數(shù)表示以為周期的周期函數(shù),又因為為奇函數(shù),所以,所以,,,所以,故選B.3、B【解析】根據(jù)不等式的性質可直接判斷出結果.【詳解】,,知A錯誤,B正確;當時,,C錯誤;當時,,D錯誤.故選:B.4、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.5、B【解析】因為G1,G2分別是△SAB和△SAC的重心,所以,所以.又因為M、N分別為AB、AC的中點,所以MN//BC,所以考點:線面平行的判定定理;線面平行的性質定理;公理4;重心的性質點評:我們要掌握重心性質:若G1為△SAB的重心,M為AB中點,則6、A【解析】根據(jù)三角函數(shù)的定義計算可得;【詳解】解:因為角終邊過點,所以;故選:A7、A【解析】設對稱點為,則,則,故選A.8、C【解析】令,,()在為增函數(shù),在上是增函數(shù),在上是減函數(shù);根據(jù)復合函數(shù)單調性判斷方法“同增異減”可知,函數(shù)y=的單調增區(qū)間為選C.【點睛】有關復合函數(shù)的單調性要求根據(jù)“同增異減”的法則去判斷,但在研究函數(shù)的單調性時,務必要注意函數(shù)的定義域,特別是含參數(shù)的函數(shù)單調性問題,注意對參數(shù)進行討論,指、對數(shù)問題針對底數(shù)a討論兩種情況,分0<a<1和a>1兩種情況,既要保證函數(shù)的單調性,又要保證真數(shù)大于零.9、D【解析】根據(jù)充分條件、必要條件的判定方法,逐項判定,即可求解.【詳解】對于A中,當時,滿足,所以充分性不成立,反之:當時,可得,所以必要性成立,所以是的必要不充分條件,不符合題意;對于B中,當時,可得,即充分性成立;反之:當時,可得,即必要性不成立,所以是的充分不必要條件,不符合題意;對于C中,若四邊形是正方形,可得四邊形的對角線互相垂直且平分,即充分性成立;反之:若四邊形的對角線互相垂直且平分,但四邊形不一定是正方形,即必要性不成立,所以是充分不必要條件,不符合題意;對于D中,若兩個三角形相似,可得兩個三角形三邊成比例,即充分性成立;反之:若兩個三角形三邊成比例,可得兩個三角形相似,即必要性成立,所以是的充分必要條件,符合題意.故選:D.10、B【解析】先化簡兩個不等式,再去判斷二者間的邏輯關系即可解決.【詳解】由可得;由可得則由不能得到,但由可得故“是”的必要不充分條件.故選:B二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】當時,,故恒過點睛:函數(shù)圖象過定點問題,主要有指數(shù)函數(shù)過定點,對數(shù)函數(shù)過定點,冪函數(shù)過點,注意整體思維,整體賦值求解12、【解析】利用誘導公式一化簡,再求特殊角正弦值即可.【詳解】.故答案為:.13、【解析】根據(jù)錐體的體積公式,找到并求出三棱錐的高及底面面積即可求解.【詳解】由題意可知該三棱錐為棱長為2的正方體的一個角,如圖所示:所以故答案為:【點睛】本題考查錐體體積公式的應用,考查運算求解能力,屬于基礎題.14、【解析】根據(jù)題意依次按“勢”從小到大順序排列,得到答案.【詳解】根據(jù)題意,將全部的子集按“勢”從小到大順序排列為:,,,,,,,.故排在第6的子集為.故答案為:15、【解析】結合的單調性求得正確答案.【詳解】根據(jù)復合函數(shù)單調性同增異減可知:在區(qū)間上遞增,最小值為,最大值為,所以函數(shù)在區(qū)間上的值域是.故答案為:三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)3;(2)-.【解析】(1)利用誘導公式化簡求值即可;(2)應用同角三角函數(shù)的平方關系、商數(shù)關系,將目標式化簡為sinα+cosα,再根據(jù)已知及與sinα+cosα的關系,求值即可.【詳解】(1).(2)原式=-=-=-==sinα+cosα.∵sinαcosα=,且α是第三象限角,∴sinα+cosα=-=-=-=-17、(1)的最大值,(2)【解析】(1)根據(jù)的范圍可得的范圍,可得的最大值及取得最大值時自變量的集合;(2)由圖象平移規(guī)律可得,結合的范圍和正弦曲線的單調性可得答案.【小問1詳解】因為,所以,所以,當即時的最大值,所以取得最大值時自變量的集合是.【小問2詳解】因為把曲線向左平移個單位長度,然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變),得到函數(shù)的圖象,所以.因為,所以.因為正弦曲線在上的單調遞增區(qū)間是,所以,所以.所以在上的單調遞增區(qū)間是.18、(1);(2)減函數(shù),證明見解析;(3).【解析】(1)根據(jù)可求的值,注意檢驗.(2)利用增函數(shù)的定義可證明在上是減函數(shù).(3)利用函數(shù)的奇偶性和單調性可把原不等式化為,利用對數(shù)函數(shù)的性質可求的取值范圍.【詳解】(1)是上的奇函數(shù),,得,此時,,故為奇函數(shù),所以.(2)為減函數(shù),證明如下:設是上任意兩個實數(shù),且,,,,即,,,,即,在上是減函數(shù).(3)不等式恒成立,.是奇函數(shù),,即不等式恒成立又在上是減函數(shù),不等式恒成立,當時,得,.當時,得,.綜上,實數(shù)的取值范圍是.【點睛】本題考查了函數(shù)的奇偶性與單調性,考查了不等式恒成立問題,考查了應用對數(shù)函數(shù)單調性解與對數(shù)有關的不等式,涉及了指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質,體現(xiàn)了轉化思想在解題中的運用.19、(1)(2)【解析】(1)利用列方程,化簡求得.(2)利用列方程,結合同角三角函數(shù)的基本關系式、二倍角公式、兩角差的余弦公式求得正確答案.【小問1詳解】,,,,由于,所以.【小問2詳解】若,則,,當時,上式不符合,所以,,所以,由兩邊平方并化簡得,,所以,所以,.20、(1)見解析;(2)45°.【解析】(Ⅰ)以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標系,求出與的坐標,利用數(shù)量積為零,即可證得結果;(Ⅱ)求出平面PAM與平面ABCD的法向量,代入公式即可得到結果.【詳解】(I)證明:以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標系,依題意,可得∴∴即,∴AM⊥PM.(II)設,且平面PAM,則,即∴,取,得;取,顯然平面ABCD,∴,結合圖形可知,二面角P-AM-D為45°.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.21、(1);(2)證明見解析;(3).【解析】(1)令即可求得結果;(2)設,由即可證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學幸福人生規(guī)劃與實踐路徑
- 外架拆除安全專項施工方案
- 2025年2月育嬰員初級模考試題(含參考答案解析)
- 2024年3月中式面點師(中級)模擬試題(含參考答案解析)
- 2月藥物分析練習題含答案(附解析)
- 家具零售店面的市場分析與競爭對策考核試卷
- 罐頭湯料與調味品制造考核試卷
- 天澄環(huán)保某知名企業(yè)戰(zhàn)略梳理與管理診斷報告
- 紡織品及針織品行業(yè)競爭格局分析考核試卷
- 《C++多線程編程》課件
- 守護美好家園防災減災主題班會課件
- “賦能年輕一代共筑韌性未來”演講稿2篇
- 糖尿病健康教育預防糖尿病課件
- DB34∕T 3269-2018 高聚物注漿技術在高速公路養(yǎng)護工程中的應用實施指南
- 《園藝產品貯藏與保鮮》課件-1.4.1果實硬度的測定
- 神經介入圍手術期管理
- 南華大學學生手冊
- DL∕T 5210.6-2019 電力建設施工質量驗收規(guī)程 第6部分:調整試驗
- 我國水上運輸行業(yè)政策
- 山東省濟南市槐蔭區(qū)2023-2024學年七年級下學期期末數(shù)學試題
- 木工支模承包合同版
評論
0/150
提交評論