




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.2.下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.43.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.114.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i5.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.6.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.7.已知函數(shù),則不等式的解集是()A. B. C. D.8.已知曲線,動點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長為()A. B.2 C.4 D.9.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]10.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.11.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.12.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件,則的最小值為______.14.已知a,b均為正數(shù),且,的最小值為________.15.展開式中的系數(shù)為_________.16.展開式中的系數(shù)的和大于8而小于32,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四邊形中,,,為中點(diǎn),.(1)求;(2)若,求面積的最大值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.19.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到距離的取值范圍.21.(12分)已知橢圓:的四個頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請說明理由.22.(10分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.2、C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點(diǎn)的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時,可得成立,當(dāng)時,只需滿足,所以“”是“”成立的充分不必要條件.【點(diǎn)睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識點(diǎn)的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點(diǎn)的時候,解得所以,此時故選A項【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.4、B【解析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進(jìn)行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點(diǎn)睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進(jìn)行預(yù)測的方法,屬于基礎(chǔ)題.6、A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7、B【解析】
由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.8、C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.9、B【解析】
先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.10、D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點(diǎn),而函數(shù)在上有3個交點(diǎn),則在上有4個不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實(shí)數(shù)根,則在上有4個不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點(diǎn),即方程,在上有4個不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.11、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.12、D【解析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時,與有且僅有四個不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來進(jìn)行求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.14、【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當(dāng)且僅當(dāng),即、時取等號,故答案為:.【點(diǎn)睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.15、【解析】
變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.16、4【解析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項式定理的問題,涉及到的知識點(diǎn)有展開式中項的系數(shù)和,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1),在和中分別運(yùn)用余弦定理可表示出,運(yùn)用算兩次的思想即可求得,進(jìn)而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設(shè),則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點(diǎn)睛】本題主要考查余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.18、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,即在上增;當(dāng)時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時,,在單調(diào)遞增,所以滿足題意;當(dāng)時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.19、(1)答案不唯一,具體見解析(2)【解析】
(1)分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當(dāng)時,由,得.由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當(dāng)時,由,得由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當(dāng)時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當(dāng)時,;當(dāng)時,當(dāng)變化時,,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當(dāng)時,取得最大值,,∴.∴的取值范圍是.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究不等式的恒成立問題,屬于中檔題.20、(1),.(2)【解析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點(diǎn)到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為圓心到的距離為,點(diǎn)到的距離的取值范圍是.【點(diǎn)睛】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀行業(yè)中級考試模擬試卷:風(fēng)險識別與評估核心策略精講
- 2025年人力資源管理師二級綜合評審論文模擬卷:實(shí)戰(zhàn)演練與策略優(yōu)化
- 2025年高中化學(xué)有機(jī)化學(xué)命名與結(jié)構(gòu)專項卷:名校同步練習(xí)實(shí)戰(zhàn)演練答案
- 2025年養(yǎng)老護(hù)理員職業(yè)技能等級考試高級模擬試卷:失能老人照護(hù)中的護(hù)理研究前沿
- 內(nèi)科咯血窒息護(hù)理
- 2025年中學(xué)教師資格考試《綜合素質(zhì)》教學(xué)反思與總結(jié)案例分析試題集(含答案)
- 2025年中考物理實(shí)驗操作考核試卷:初中物理實(shí)驗操作與實(shí)驗創(chuàng)新設(shè)計能力
- 2025年執(zhí)業(yè)醫(yī)師資格考試臨床類別實(shí)踐技能模擬試卷(病史采集與查體)-神經(jīng)內(nèi)科醫(yī)學(xué)實(shí)踐技能模擬試卷
- 2025年上海市國際課程一年級上學(xué)期期中數(shù)學(xué)試卷(含答案)
- 阿拉伯語專業(yè)四級閱讀與理解真題精析(2025年高頻考點(diǎn)版)
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 市政雨污水管排水工程監(jiān)理實(shí)施細(xì)則
- 《膠體與界面化學(xué)》課件
- 臺球店員工合同范例
- 程序文件-XXX(安全閥校驗機(jī)構(gòu))(2023版)
- 池塘淤泥脫水固化施工方案
- 商業(yè)銀行信息系統(tǒng)等級保護(hù)政策
- 餐廳干股分紅協(xié)議書
- 醫(yī)院手術(shù)室凈化裝修方案
- 基底節(jié)腦出血護(hù)理查房
- 2024年第三屆浙江技能大賽(農(nóng)機(jī)修理賽項)理論考試題庫(含答案)
評論
0/150
提交評論