




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
2、要求的。1已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為( )A2kB4kC4D22在中,則在方向上的投影是( )A4B3C-4D-33已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為( )ABCD4已知函數(shù),若,則等于( )A-3B-1C3D05已知集合則( )ABCD6在直角中,若,則( )ABCD7集合中含有的元素個數(shù)為( )A4B6C8D128已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是( )ABCD9已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,則,的大小關(guān)系(用不等號連接)為( )ABCD10
3、定義在上的函數(shù)滿足,則()A-1B0C1D211如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則( )ABCD12復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20分。13已知,則的值為_.14在三棱錐中,三條側(cè)棱兩兩垂直,則三棱錐外接球的表面積的最小值為_.15已知函數(shù),則過原點且與曲線相切的直線方程為_.16在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的
4、三角形面積為,則雙曲線的離心率為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐中,是等邊三角形,.(1)若,求證:平面;(2)若,求二面角的正弦值18(12分)已知橢圓的焦距為2,且過點(1)求橢圓的方程;(2)設為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,()證明:平分線段(其中為坐標原點);()當取最小值時,求點的坐標19(12分)已知函數(shù)f(x)|x2|x1|.()解不等式f(x)1;()當x0時,若函數(shù)g(x)(a0)的最小值恒大于f(x),求實數(shù)a的取值范圍20(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)
5、如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份20140需求量2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: ,.21(12分)我們稱n()元有序?qū)崝?shù)組(,)為n維向量,為該向量的范數(shù).已知n維向量,其中,2,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為
6、.(1)求和的值;(2)當n為偶數(shù)時,求,(用n表示).22(10分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:)與網(wǎng)上預約出租車訂單數(shù)(單位:份);日平均氣溫()642網(wǎng)上預約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)
7、據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當時,等式不是雙曲線的方程;當時,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.2D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示
8、:,又,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結(jié)合思想的應用問題.3A【解析】若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,設,當時,函數(shù)單調(diào)遞增,當時,函數(shù)單調(diào)遞減,當時,當,函數(shù)恒過點,分別畫出與的圖象,如圖所示,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,且,即,且,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學運算能力.4D【解析
9、】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關(guān)系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系. 5B【解析】解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎題.6C【解析】在直角三角形ABC中,求得 ,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值【詳解】在直角中,若,則 故選C.【點睛】本題考查向量
10、的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題7B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B8C【解析】分析:先求導,再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得. 當a1時,所以函數(shù)f(x)在單調(diào)遞減, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以 故a1,與a1矛盾,故a1矛盾. 當1ae時,函數(shù)f(x)在0,lna單調(diào)遞增,在(lna,1單調(diào)遞減. 所以 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以
11、 即 令, 所以 所以函數(shù)g(a)在(1,e)上單調(diào)遞減, 所以, 所以當1ae時,滿足題意. 當a時,函數(shù)f(x)在(0,1)單調(diào)遞增, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 故1+1, 所以 故綜上所述,a.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學問題的等價轉(zhuǎn)化,找到了問題的突破口.9A【解析】因為,所以,即周期為,因為為奇函數(shù),所以可作一個周期-2e,2e示意圖,如圖在(,)單調(diào)遞增,因為,因此
12、,選點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù) ,函數(shù)為偶函數(shù)(定義域關(guān)于原點對稱);(2)函數(shù)關(guān)于點對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則10C【解析】推導出,由此能求出的值【詳解】定義在上的函數(shù)滿足,故選C【點睛】本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.11D【解析】由半圓面積之比,可求出兩個直角邊 的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知 ,以 為直徑的半圓面積,以 為直徑的半圓面積,則,即.由 ,得 ,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.
13、本題的關(guān)鍵是由面積比求出角的正切值.12C【解析】由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應點坐標即得【詳解】解析:,對應點為,在第三象限故選:C【點睛】本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義掌握復數(shù)除法法則是解題關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】先求,再根據(jù)的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運算,屬基礎題.14【解析】設,可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積【詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接
14、球的直徑的平方記外接球半徑為,當時,故答案為:【點睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和15【解析】設切點坐標為,利用導數(shù)求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程【詳解】設切點坐標為,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為【點睛】本題考查導數(shù)的幾何意義,考查過點作函數(shù)圖象的切線方程,求解思路是:(1)先設切點坐標,并利用導數(shù)求出切線方程;(2)將所過點的坐標代入切線方程,求出參數(shù)的值,可得出切點的坐標;(3
15、)將參數(shù)的值代入切線方程,可得出切線的方程16【解析】利用即可建立關(guān)于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,由已知,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)詳見解析(2)【解析】(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,所以,因為,所以,因為,所以,所以, 因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三
16、角形,所以.又因為,所以,所以.又,平面,所以平面.因為平面,所以平面平面.在平面內(nèi)作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,所以,.設為平面的法向量,則,即,令,可得.設為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.18(1)(2)()見解析()點的坐標為【解析】(1)由題意得,再由的關(guān)系求出,即可得橢圓的標準方程;(2)(i)設,的中點為,設直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值
17、時的條件獲得等量關(guān)系,從而確定點的坐標.【詳解】解:(1)由題意得, ,所以,所以橢圓方程為(2)設, 的中點為,()證明:由,可設直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得 所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標公式,同時考查弦長公式,屬于較難題.19();()。【解析】()分類討論,去掉絕對值,求得原絕對值不等式的解集;()由條件利用基本不等式求得,再由,求得的范圍
18、【詳解】()當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是 ()因為,當且僅當時等號成立,所以.當時,所以所以,解得,故實數(shù)的取值范圍為【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想20(1)見解析;(2)能夠滿足.【解析】(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份2014”為橫坐標,“需求量”為縱坐標的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份2014024需求量25701929(2)由題意可知,變量與之間具有線性相關(guān)關(guān)系,由(1)中表格可得,.由上述計算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預測2020年的糧食需求量為:(萬噸),因為,故能夠滿足該地區(qū)的糧食需求.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省寧德市2016-2017學年高一英語下學期期中聯(lián)合考試試題(含解析)
- 2025年馬術(shù)教練資格認證考試試卷:馬術(shù)教學策略與應用試題
- 2025年歐洲女子數(shù)學奧林匹克競賽模擬試卷解析:幾何證明與組合分析策略解析
- 2025年會計實務初級會計師資產(chǎn)核算強化測試
- 2025年注冊會計師CPA經(jīng)濟法模擬試卷(公司法與合同法案例)高分突破與權(quán)威指導
- 健康評估護理診斷
- 第18套:2024上饒市高三六校聯(lián)考數(shù)學模擬試卷及參考答案
- 公司內(nèi)部制度流程的撰寫
- 2025年機動車駕駛教練員從業(yè)資格考試模擬試卷理論教學與實操技巧實戰(zhàn)指南
- 2025年學生心理危機干預與預防規(guī)章制度詳解
- 2024年湖南省高中學業(yè)水平合格性考試英語試卷真題(含答案詳解)
- 《內(nèi)科胸腔鏡術(shù)》課件
- CJJ 33-2005城鎮(zhèn)燃氣輸配工程施工與驗收規(guī)范
- 《市場營銷:網(wǎng)絡時代的超越競爭》第4版 課件 第9章 通過構(gòu)建渠道網(wǎng)絡傳遞顧客價值
- 農(nóng)民工工資代付款方協(xié)議模板
- 中醫(yī)醫(yī)療技術(shù)手冊2013普及版
- 藥物合成反應-9合成設計原理
- 跨學科閱讀綱要智慧樹知到期末考試答案章節(jié)答案2024年山東師范大學
- 2025屆湖南省數(shù)學高一下期末學業(yè)水平測試試題含解析
- 哮病-《中醫(yī)內(nèi)科學》教案
- 《電力建設工程起重施工技術(shù)規(guī)范》
評論
0/150
提交評論