2021-2022學(xué)年四川省自貢市富順縣高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年四川省自貢市富順縣高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年四川省自貢市富順縣高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年四川省自貢市富順縣高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年四川省自貢市富順縣高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1執(zhí)行如圖所示的程序框圖,則輸出的的值為( ) ABCD2已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為( )AB0CD3已知函數(shù),則,的大小關(guān)系為( )ABCD4已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為( )A-2B-1C1D25函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為( )ABCD6已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)滿足,則的取值范圍是( )ABCD7若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為( )ABCD8已知函數(shù)的圖象如圖所示,則下列說法錯誤的是( )A函數(shù)在上單調(diào)遞減B函數(shù)在上單調(diào)遞增C函數(shù)的對稱

3、中心是D函數(shù)的對稱軸是9已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是( )ABCD10已知三棱錐的所有頂點都在球的球面上,平面,若球的表面積為,則三棱錐的體積的最大值為( )ABCD11復(fù)數(shù)為純虛數(shù),則( )AiB2iC2iDi12已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標(biāo)原點),則雙曲線的離心率為( )AB3CD二、填空題:本題共4小題,每小題5分,共20分。13若關(guān)于的不等式在上恒成立,則的最大值為_14在的展開式中,的系數(shù)為_用數(shù)字作答15在平面直角坐標(biāo)系中,曲線上任意一點到直線的距離的最小值為_16如果橢圓的對稱軸為坐標(biāo)軸,短軸的一個端點與兩焦點組成一正三角

4、形,焦點在x軸上,且=, 那么橢圓的方程是 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.18(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。19(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.20(12分)已知橢圓經(jīng)過點,離心率為.(1)

5、求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.21(12分)已知,且.(1)求的最小值;(2)證明:.22(10分)如圖,三棱錐中,點,分別為,的中點,且平面平面求證:平面;若,求證:平面平面.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,執(zhí)行第一次循環(huán)時:,所以:不成立繼續(xù)進(jìn)行循環(huán),當(dāng),時,成立,由于不成立,執(zhí)行下一次循環(huán),成立,成立,輸出的的值為.故選:B【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)

6、和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型2D【解析】運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),所以,當(dāng)時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.3B【解析】可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)

7、遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運算求解能力.4B【解析】求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f(0),求解即可;【詳解】f (x)的定義域為(1,+),因為f(x)a,曲線yf(x)在點(0,f(0)處的切線方程為y2x,可得1a2,解得a1,故選:B【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力5D【解析】 由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱, 且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱, 故選D.6C【解析】根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)

8、間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.7C【解析】由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,則當(dāng)最大時,求得,故選:C【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題

9、8B【解析】根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.9C【解析】先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】

10、雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.10B【解析】由題意畫出圖形,設(shè)球0得半徑為R,AB=x, AC=y,由球0的表面積為20,可得R2=5,再求出三角形A BC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,由,得如圖:設(shè)三角形的外心為,連接,可得,則在中,由正弦定理可得:,即,由余弦定理可得,則三棱錐的體積的最大值為故選:【點睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等

11、基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題11B【解析】復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】為純虛數(shù),解得. .故選:.【點睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.12B【解析】設(shè),代入雙曲線方程相減可得到直線的斜率與中點坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率【詳解】,設(shè),則,兩式相減得,故選:B【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標(biāo)時,可設(shè)弦兩端點坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點坐標(biāo)之間的關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13【解析

12、】分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,不合題意;當(dāng)時,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,則,即.當(dāng)時,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為: 【點睛】本題考查不等式恒成立問題. 不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法; 如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討

13、論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解141【解析】利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù)【詳解】二項展開式的通項為 令得的系數(shù)為 故答案為1【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具15【解析】解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標(biāo),再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導(dǎo)數(shù)法):

14、曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉(zhuǎn)化為利用切線與直線平行來找出切點,轉(zhuǎn)化為切點到直線的距離,也可以設(shè)曲線上的動點坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.16【解析】由題意可設(shè)橢圓方程為:短軸的一個端點與兩焦點組成一正三角形,焦點在軸上又,橢圓的方程為,故答案為考點:橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步

15、驟。17(1)(2)不存在;詳見解析【解析】(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,不成立;或,異號,不成立;故不存在實數(shù),使得,.【點睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.18(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可【詳解】(1)由直線l的參數(shù)方

16、程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得 為C的直角坐標(biāo)方程.(2)將代入拋物線得由已知成等比數(shù)列,即,整理得 (舍去)或.【點睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵19(1)(2)【解析】(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和【詳解】解:(1)設(shè)等比數(shù)列的公比為又因為,所以解得(舍)或所以,即(2)據(jù)(1)求解知,所以所以【點睛】本題考查求等比數(shù)列的通項公式,考查裂項相消法求和解題方法是基本量法基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握20(1);(2)見解析.【解析】(1)根據(jù)題意得出關(guān)于、的方程組,解出、的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達(dá)定理,由向量的坐標(biāo)運算可求得點的坐標(biāo)表達(dá)式,并代入韋達(dá)定理,消去,可得出點的橫坐標(biāo),進(jìn)而可得出結(jié)論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設(shè)直線的方程為,、,由,得.,則有,由,得,由,可得,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.21(1)(2)證明見解析【解析】(1)利用基本不等式即可求得最小值;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論