




免費預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2.2 二次函數(shù)的圖像及性質(zhì) 第一課時 2.2.1 二次函數(shù)的圖像及性質(zhì)教學(xué)目標(biāo) 【知識與技能】1、 能夠利用描點法作出函數(shù)y=x2的圖像.能夠根據(jù)圖像認(rèn)識和理解二次函數(shù)y=x2的性質(zhì).2、 猜想并能作出y=-x2的圖像,能比較它與y=x2的圖像的異同. 【過程與方法】 1經(jīng)歷探索二次函數(shù)yx2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗2由函數(shù)y=x2的圖象及性質(zhì),對比地學(xué)習(xí)y-x2的圖象及性質(zhì),并能比較出它們的異同點,培養(yǎng)學(xué)生的類比學(xué)習(xí)能力和發(fā)展學(xué)生的求同求異思維【情感、態(tài)度與價值觀要求】 1通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點的認(rèn)識和對二次函數(shù)性質(zhì)的理解2在利用圖象討論二次函數(shù)的性質(zhì)時,讓學(xué)生盡可能多地合作交流,以便使學(xué)生能夠從多個角度看問題,進(jìn)而比較準(zhǔn)確地理解二次函數(shù)的性質(zhì)學(xué)情分析 教學(xué)重點、難點 重點: 1能夠利用描點法作出函數(shù)y=x2的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)yx2的性質(zhì) 2能夠作出二次函數(shù)y=-x2的圖象,并能比較它與y=x2的圖象的異同難點:經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗并把這種經(jīng)驗運(yùn)用于研究二次函數(shù)y=-x2的圖象與性質(zhì)方面,實現(xiàn)“探索經(jīng)驗運(yùn)用”的思維過程關(guān)鍵:利用描點法作正確出函數(shù)y=x2和y-x2的圖象,根據(jù)圖象認(rèn)識和理解二次函數(shù)yx2和y-x2的性質(zhì)突破方法:通過學(xué)生自主動手列表、描點、連線等操作,正確作出函數(shù)圖像,對圖像進(jìn)行觀察、總結(jié).最后得出的性質(zhì).教法與學(xué)法導(dǎo)航教學(xué)方法:采用“探索-總結(jié)-運(yùn)用法”為主線的教學(xué)方法.通過設(shè)置活動,引導(dǎo)學(xué)生動手、分析、類比,得出二次函數(shù)y=x2的圖像和性質(zhì). 學(xué)習(xí)方法:由學(xué)生自己思考,動手操作,合作交流得出結(jié)論.教學(xué)準(zhǔn)備教師準(zhǔn)備:幻燈片4張 第一張:(記作22 A)第二張:(記作22 B)第三張:(記作22 C) 第四張:(記作22 D)學(xué)生準(zhǔn)備:兩張直角坐標(biāo)紙畫圖工具。教學(xué)過程 一創(chuàng)設(shè)問題情境,引入新課 師我們在學(xué)習(xí)了正比例函數(shù),一次函數(shù)與反比例函數(shù)的定義后,研究了它們各自的圖象特征知道正比例函數(shù)的圖象是過原點的一條直線,一般的一次函數(shù)的圖象是不過原點的一條直線,反比例函數(shù)的圖象是兩條雙曲線上節(jié)課我們學(xué)習(xí)了二次函數(shù)的一般形式為yax2+bx+c(其中a,b,c是常數(shù)且a0),那么它的圖象是否也為直線或雙曲線呢?本節(jié)課我們將一起來研究有關(guān)問題 二新課講解 (一)、作函數(shù)yx2的圖象 師一次函數(shù)的圖象是一條直線,二次函數(shù)的圖象是什么形狀呢?讓我們先看最簡單的二次函數(shù)yx2 大家還記得畫函數(shù)圖象的一般步驟嗎? 生記得,是列表,描點,連線 師非常正確,下面就請大家按上面的步驟作出y=x2的圖象 生(1)列表:x-3-2-10123y9410149(2)在直角坐標(biāo)系中描點22 A (3)用光滑的,曲線連接各點,便得到函數(shù)yx2的圖象師畫的非常漂亮【設(shè)計意圖】讓學(xué)生通過自己動手操作,小組內(nèi)進(jìn)行對比,認(rèn)識二次函數(shù)的圖像,為探索二次函數(shù)圖像和性質(zhì)作準(zhǔn)備. (二)、議一議 投影片:(22 A)對于二次函數(shù)yx2的圖象,(1)你能描述圖象的形狀嗎?與同伴進(jìn)行交流(2)圖象與x軸有交點嗎?如果有,交點坐標(biāo)是什么?(3)當(dāng)x0時呢?(4)當(dāng)x取什么值時,y的值最小?最小值是什么?你是如何知道的?(5)圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點,并與同伴進(jìn)行交流 生(1)圖象的形狀是一條曲線就像拋出的物體所行進(jìn)的路線的倒影 (2)圖象與x軸有交點,交于原點,交點坐標(biāo)是(0,0) (3)當(dāng)x0時,圖象在y軸的右側(cè),隨著x值的增大,y的值逐漸增大。 (4)觀察圖象可知,當(dāng)x0時,y的值最小,最小值是0 (5)由圖可知,圖象是軸對稱圖形,它的對稱軸是y軸,從剛才的列表中可找到對應(yīng)點(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9) 師大家的分析判斷能力很棒,下面我們系統(tǒng)地總結(jié)一下 (三)、y=x2的圖象的性質(zhì)投影片:(22 B) 師從圖象來看拋物線的開口方向向上 下面請大家討論之后系統(tǒng)地總結(jié)出yx2的圖象的所有性質(zhì) 生(1)拋物線的開口方向是向上 (2)它的圖象有最低點,最低點坐標(biāo)是(0,0) (3)它是軸對稱圖形,對稱軸是y軸在對稱軸左側(cè),y隨x的增大而減??;在對稱軸的右側(cè),y隨x的增大而增大 (4)圖象與x軸有交點,這個交點也是對稱軸與拋物線的交點,稱為拋物線的頂點,同時也是圖象的最低點,坐標(biāo)為(0,0)(5) 因為圖象有最低點,所以函數(shù)有最小值,當(dāng)x0時,y最小=0要點注意:在列表、描點時,要注意合理靈活地取值以及圖形的對稱性,因為圖象是拋物線,因此,要用平滑曲線按自變量從小到大或從大到小的順序連接【設(shè)計意圖】通過“議一議”可以加強(qiáng)學(xué)生的注意力,培養(yǎng)學(xué)生“觀察-分析-發(fā)現(xiàn)-總結(jié)”的數(shù)學(xué)學(xué)習(xí)理念,同時對二次函數(shù)圖像的性質(zhì)有一個更深入的理解和認(rèn)識. (四)、做一做. 投影片:(22 C)二次函數(shù)y=-x2的圖象是什么形狀?先想一想,然后作出它的圖象它與二次函數(shù)y=x2的圖象有什么關(guān)系?與同伴進(jìn)行交流 師請大家按照畫圖象的步驟作出函數(shù)y=-x2的圖象 生y=-x2的圖象如右圖: 形狀還是拋物線,只是它的開口方向向下,它與y=x2的圖象形狀相同,方向相反,這兩個圖形可以看成是關(guān)于x軸對稱 師下面我們試著討論y=-x2的圖象的性質(zhì) 生(1)它的開口方向向下 (2)它的圖象有最高點,最高點坐標(biāo)為(0,0) (3)它是軸對稱圖形,對稱軸是y軸,在對稱軸左側(cè),y隨x的增大而增大,在對稱軸右側(cè)x隨x的增大而減小 (4)圖象與x軸有交點,也叫拋物線的頂點,還是圖象的最高點,這點的坐標(biāo)為(0,0) (5)因為圖象有最高點,所以函數(shù)有最大值,當(dāng)x-0時,y最大0 師大家總結(jié)得非常棒【設(shè)計意圖】給學(xué)生一個想象的空間,進(jìn)一步熟練掌握用列表、描點、連線的方法作函數(shù)圖像.通過教師引導(dǎo)學(xué)生歸納總結(jié)得出y=-x2的性質(zhì). (五)、函數(shù)y=x2與y-x2的圖象的比較 我們分別作出函數(shù)y=x2與y=-x2的圖象,并對圖象的性質(zhì)作系統(tǒng)的研究現(xiàn)在我們再來比較一下它們圖象的異同點 投影片:(22 D) 不同點:1 開口方向不同,y=x2開口向上,y=-x2開口向下2函數(shù)值隨自變量增大的變化趨勢不同,在yx2圖象中,在對稱軸左側(cè),y隨x的增大而減小,在對稱軸右側(cè),y隨x的增大而增大在y=-x2的圖象中正好相反3在y=x2中y有最小值,即x=0時y最小0,在y=-x2中y有最大值即當(dāng)x0時,y最大04y=x2有最低點,y=-x2有最高點相同點:1圖象都是拋物線2圖象都與x軸交于點(0,0)3圖象都關(guān)于y軸對稱聯(lián)系:它們的圖象關(guān)于x軸對稱【設(shè)計意圖】通過對函數(shù)y=x2與y-x2的圖象的比較加強(qiáng)對二次函數(shù)yax2中a的符號與圖像之間的關(guān)系,同時進(jìn)一步領(lǐng)會類比思想在數(shù)學(xué)學(xué)習(xí)中的作用. 三活動與探究 例1: 已知是二次函數(shù),且當(dāng)時,y隨x的增大而增大(1)求k的值;(2)求頂點坐標(biāo)和對稱軸解 (1)由題意,得, 解得k=2(2)二次函數(shù)為,則頂點坐標(biāo)為(0,0),對稱軸為y軸例2已知正方形周長為Ccm,面積為S cm2(1)求S和C之間的函數(shù)關(guān)系式,并畫出圖象;(2)根據(jù)圖象,求出S=1 cm2時,正方形的周長;(3)根據(jù)圖象,求出C取何值時,S4 cm2 分析 此題是二次函數(shù)實際應(yīng)用問題,解這類問題時要注意自變量的取值范圍;畫圖象時,自變量C的取值應(yīng)在取值范圍內(nèi)解 (1)由題意,得列表:C246814描點、連線,圖象如圖2622(2)根據(jù)圖象得S=1 cm2時,正方形的周長是4cm(3)根據(jù)圖象得,當(dāng)C8cm時,S4 cm2要點注意:(1)此圖象原點處為空心點(2)橫軸、縱軸字母應(yīng)為題中的字母C、S,不要習(xí)慣地寫成x、y(3)在自變量取值范圍內(nèi),圖象為拋物線的一部分【設(shè)計意圖】讓學(xué)生更好地自主發(fā)現(xiàn)并探索二次函數(shù)圖像的特點,經(jīng)歷知識的形成、建構(gòu)過程,及時鞏固二次函數(shù)圖像的性質(zhì),同時訓(xùn)練學(xué)生應(yīng)用二次函數(shù)圖像的性質(zhì)解決數(shù)學(xué)問題. 四課時小結(jié) 本節(jié)課我們學(xué)習(xí)了如下內(nèi)容: 1畫函數(shù)y=x2的圖象,并對圖象的性質(zhì)作了總結(jié) 2畫函數(shù)y-x2的圖象,并研究其性質(zhì) 3比較yx2與y=-x2的圖象的異同點及聯(lián)系 板書展示22 二次函數(shù)的圖像和性質(zhì)(1)一、1作函數(shù)yx2的圖象 2議一議(投影片22 A) 3. yx2的圖象的性質(zhì)(投影片2.2 B) 4做一做(投影片22 C) 5. 函數(shù)yx2與y=-x2的圖象的比較 課堂練習(xí)1在同一直角坐標(biāo)系中,畫出下列函數(shù)的圖象,并分別寫出它們的開口方向、對稱軸和頂點坐標(biāo)(1) (2) (3)2(1)函數(shù)的開口 ,對稱軸是 ,頂點坐標(biāo)是 ;(2)函數(shù)的開口 ,對稱軸是 ,頂點坐標(biāo)是 3底面是邊長為x的正方形,高為05cm的長方體的體積為ycm3(1)求y與x之間的函數(shù)關(guān)系式;(2)畫出函數(shù)的圖象;(3)根據(jù)圖象,求出y=8 cm3時底面邊長x的值;(4)根據(jù)圖象,求出x取何值時,y45 cm34二次函數(shù)與直線交于點P(1,b)(1)求a、b的值;(2)寫出二次函數(shù)的關(guān)系式,并指出x取何值時,該函數(shù)的y隨x的增大而減小參考答案:1.略2.(1)向上,y軸,(0,0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北京市房屋買賣合同范本
- 經(jīng)濟(jì)有效性與可持續(xù)性試題及答案
- 信息處理系統(tǒng)工程試題及答案
- 技術(shù)員信息處理考試試題與答案的全景回顧
- 高管培訓(xùn)計劃
- 美術(shù)教學(xué)中使用新技術(shù)的研究計劃
- 設(shè)定清晰的工作期望與標(biāo)準(zhǔn)計劃
- 軟件設(shè)計師考試中的終身學(xué)習(xí)與自我提升方法探討試題及答案
- 戰(zhàn)略成本管理在2025年的實踐及試題及答案
- 法學(xué)概論常見題例解析試題及答案
- 2025-2030年中國無縫鋼管行業(yè)市場深度調(diào)研及競爭格局與投資研究報告
- 山東省濟(jì)南市2025屆高三三模化學(xué)試卷(含答案)
- 2022年新高考全國I卷數(shù)學(xué)真題
- 初三志愿填報家長會課件
- 2025年北京市租賃合同模板
- 糧食收購合同協(xié)議書范本
- 大學(xué)物理實驗安全注意事項題試題及答案
- 2024年甘肅省臨潭縣事業(yè)單位公開招聘醫(yī)療衛(wèi)生崗筆試題帶答案
- 《工作報告寫法》課件
- 【高三下】湖北省部分高中協(xié)作體2024-2025學(xué)年高三4月統(tǒng)考語文試題含答案
- 23G409先張法預(yù)應(yīng)力混凝土管樁
評論
0/150
提交評論