北京理工大學(xué)2018年單獨考試數(shù)學(xué)大綱_第1頁
北京理工大學(xué)2018年單獨考試數(shù)學(xué)大綱_第2頁
北京理工大學(xué)2018年單獨考試數(shù)學(xué)大綱_第3頁
北京理工大學(xué)2018年單獨考試數(shù)學(xué)大綱_第4頁
北京理工大學(xué)2018年單獨考試數(shù)學(xué)大綱_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天任啟航考研 天任啟航考研,只為一次考上研北京理工大學(xué) 2018 年單獨考試數(shù)學(xué)大綱數(shù) 學(xué)考試科目: 高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計 第一部分:考試內(nèi)容及要求高等數(shù)學(xué) 一、函數(shù)、極限、連續(xù) 考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 簡單應(yīng)用問題的函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無窮小和無窮大的概念及其關(guān)系 無窮小的性質(zhì)及無窮小的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限 : exxx1lim,sinl0函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求 1理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。 2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。 3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。 天任啟航考研 天任啟航考研,只為一次考上研4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。6掌握極限的性質(zhì)及四則運算法則。7掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。8理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。 9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)) ,會判別函數(shù)間斷點的類型。10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理)及其簡單應(yīng)用。二、一元函數(shù)微分學(xué) 考試內(nèi)容 導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 基本初等函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)和微分的四則運算 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性。微分中值定理 洛必達(LHospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)最大值和最小值 弧微分 曲率的概念 曲率半徑??荚囈?1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,天任啟航考研 天任啟航考研,只為一次考上研會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。2掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。3了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。4. 會求分段函數(shù)的一階、二階導(dǎo)數(shù)。5會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。6理解并會用羅爾定理、拉格朗日中值定理,了解柯西中值定理。 7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應(yīng)用。8會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。9掌握用洛必達法則求未定式極限的方法。10了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 簡單有理函數(shù)、三角函數(shù)的有理式和無理函數(shù)的積分 廣義積分概念 定積分的應(yīng)用??荚囈筇烊螁⒑娇佳?天任啟航考研,只為一次考上研1理解原函數(shù)概念,理解不定積分和定積分的概念。2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。3會求簡單有理函數(shù)、三角函數(shù)有理式及無理函數(shù)的積分。4理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。5了解廣義積分的概念,會計算簡單的廣義積分。6掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積、平行截面面積為已知的立體體積、功等) 。四、向量代數(shù)和空間解析幾何 考試內(nèi)容 向量的概念 向量的線性運算 向量的數(shù)量積和向量積 向量的混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標(biāo)表達式及其運算 單位向量 方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念 平面方程、直線方程 平面與平面、平面與直線、直線與直線的以及平行、垂直的條件 點到平面和點到直線的距離 球面 母線平行于坐標(biāo)軸的柱面 旋轉(zhuǎn)軸為坐標(biāo)軸的旋轉(zhuǎn)曲面的方程 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標(biāo)平面上的投影曲線方程考試要求1. 理解空間直角坐標(biāo)系,理解向量的概念及其表示。 2掌握向量的運算(線性運算、數(shù)量積、向量積、混合積) ,了解兩個向量垂直、平行的條件。 3理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達式,掌握用坐標(biāo)表達式進行向量運算的方法。 天任啟航考研 天任啟航考研,只為一次考上研4掌握平面方程和直線方程及其求法。 5會求平面與平面、平面與直線、 直線與直線之間的夾角。6會求點到直線以及點到平面的距離。 7. 了解曲面方程和空間曲線方程的概念。 8. 了解常用二次曲面的方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。 9. 了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標(biāo)平面上的 投影,并會求其方程。 五、多元函數(shù)微分學(xué) 考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限和連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù) 方向?qū)?shù)和梯度 空間曲線的切線和法平面 曲面的切平面和法線 二元函數(shù)的二階泰勒公式 多元函數(shù)的極值和條件極值 多元函數(shù)的最大值、最小值及其簡單應(yīng)用 考試要求 1理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。 2了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。 3理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分。 4理解方向?qū)?shù)與梯度的概念并掌握其計算方法。 5掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法。 天任啟航考研 天任啟航考研,只為一次考上研6了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù)。 7了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。 8了解二元函數(shù)的二階泰勒公式。 9理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題。 六、多元函數(shù)積分學(xué) 考試內(nèi)容 二重積分、三重積分的概念及性質(zhì) 二重積分與三重積分的計算和應(yīng)用 兩類曲線積分的概念、性質(zhì)及計算 兩類曲線積分的關(guān)系 格林(Green)公式 平面曲線積分與路徑無關(guān)的條件 已知全微分求原函數(shù) 兩類曲面積分的概念、性質(zhì)及計算 兩類曲面積分的關(guān)系 高斯(Gauss)公式 斯托克斯(STOKES)公式 散度、旋度的概念及計算 曲線積分和曲面積分的應(yīng)用 考試要求 1理解二重積分、三重積分的概念,了解重積分的性質(zhì)。2掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)) ,會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)) 。 3理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。 4掌握計算兩類曲線積分的方法。 5掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件,會求全微分的天任啟航考研 天任啟航考研,只為一次考上研原函數(shù)。 6了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計算曲面、曲線積分。 7了解散度與旋度的概念,并會計算。 8會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等) 。七、無窮級數(shù) 考試內(nèi)容 常數(shù)項級數(shù)的收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質(zhì)與收斂的必要條件 幾何級數(shù)與 p 級數(shù)以及它們的收斂性 正項級數(shù)收斂性的判別法 交錯級數(shù)與萊布尼茨定理 任意項級數(shù)的絕對收斂與條件收斂 函數(shù)項級數(shù)的收斂域與和函數(shù)的概念 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)的和函數(shù) 冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法 初等函數(shù)冪級數(shù)展開式 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在 上的傅里葉級數(shù) 函,數(shù)在 上的正弦級數(shù)和余弦級數(shù) ,0考試要求 1理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。 2掌握幾何級數(shù)與 p 級數(shù)的收斂與發(fā)散的條件。 3掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。 4掌握交錯級數(shù)的萊布尼茨判別法。 天任啟航考研 天任啟航考研,只為一次考上研5.了解任意項級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。 6了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。 7理解冪級數(shù)的收斂半徑的概念、并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。 8了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項微分和逐項積分) ,會求簡單冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。 9了解函數(shù)展開為泰勒級數(shù)的充分必要條件。 10掌握 、 、 、 和 的麥克勞林展開式,會用它xesinxco)1ln()(x們將一些簡單函數(shù)間接展開成冪級數(shù)。 11了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在 上的,函數(shù)展開為傅里葉級數(shù),會將定義在 上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),,0會寫出傅里葉級數(shù)的和的表達式。 八、常微分方程 考試內(nèi)容 常微分方程的基本概念 變量可分離的方程 齊次微分方程 一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 微分方程簡單應(yīng)用 考試要求 1了解微分方程及其解、階、通解、初始條件和特解等概念。 天任啟航考研 天任啟航考研,只為一次考上研2掌握變量可分離的方程及一階線性方程的解法。3會解齊次方程、伯努利方程和全微分方程。4理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。5掌握二隊常系數(shù)齊次線性微分方程的解法。6會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。7會用微分方程解決一些簡單的應(yīng)用問題。線性代數(shù)一、行列式考試內(nèi)容行列式的定義和基本性質(zhì) 行列式按行(列)展開定理考試要求1了解行列式的定義,掌握行列式的性質(zhì)。2會用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。二、矩陣考試內(nèi)容矩陣的定義 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的定義及性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求1理解矩陣的定義,了解對角矩陣、數(shù)量矩陣、單位矩陣、三角矩陣、對天任啟航考研 天任啟航考研,只為一次考上研稱矩陣及反對稱矩陣的定義及其性質(zhì)。2 掌握矩陣的線性運算、乘法、轉(zhuǎn)置及其運算規(guī)律,了解方陣的冪及方陣乘積的行列式。3理解逆矩陣的定義,掌握逆矩陣的性質(zhì)及矩陣可逆的充分必要條件,理解伴隨矩陣的定義,會用伴隨矩陣求逆矩陣。4了解矩陣的初等變換、初等矩陣及矩陣等價的定義,理解矩陣的秩的定義,掌握用初等變換求逆矩陣和矩陣的秩的方法。5 了解分塊矩陣的定義,掌握分塊矩陣的運算法則。三、向量考試內(nèi)容向量的定義 向量的線性組合與線性表示 向量組

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論