專題01 旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)(原卷版)_第1頁
專題01 旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)(原卷版)_第2頁
專題01 旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)(原卷版)_第3頁
專題01 旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)(原卷版)_第4頁
專題01 旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)(原卷版)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題01旋轉(zhuǎn)中的三種全等模型(手拉手、半角、對(duì)角互補(bǔ)模型)本專題重點(diǎn)分析旋轉(zhuǎn)中的三類全等模型(手拉手、半角、對(duì)角互補(bǔ)模型),結(jié)合各類模型展示旋轉(zhuǎn)中的變與不變,并結(jié)合經(jīng)典例題和專項(xiàng)訓(xùn)練深度分析基本圖形和歸納主要步驟,同時(shí)規(guī)范了解題步驟,提高數(shù)學(xué)的綜合解題能力。模型1.手拉手模型【模型解讀】將兩個(gè)三角形(或多邊形)繞著公共頂點(diǎn)旋轉(zhuǎn)某一角度后能完全重合,則這兩個(gè)三角形構(gòu)成手拉手全等,也叫旋轉(zhuǎn)型全等。其中:公共頂點(diǎn)A記為“頭”,每個(gè)三角形另兩個(gè)頂點(diǎn)逆時(shí)針順序數(shù)的第一個(gè)頂點(diǎn)記為“左手”,第二個(gè)頂點(diǎn)記為“右手”。手拉模型解題思路:SAS型全等(核心在于導(dǎo)角,即等角加(減)公共角)。1)雙等邊三角形型條件:△ABC和△DCE均為等邊三角形,C為公共點(diǎn);連接BE,AD交于點(diǎn)F。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。2)雙等腰直角三角形型條件:△ABC和△DCE均為等腰直角三角形,C為公共點(diǎn);連接BE,AD交于點(diǎn)N。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。3)雙等腰三角形型條件:△ABC和△DCE均為等腰三角形,C為公共點(diǎn);連接BE,AD交于點(diǎn)F。結(jié)論:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠AFD。4)雙正方形形型條件:△ABCFD和△CEFG都是正方形,C為公共點(diǎn);連接BG,ED交于點(diǎn)N。結(jié)論:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。例1.(2022秋·福建龍巖·九年級(jí)??茧A段練習(xí))如圖,在邊長(zhǎng)為8的等邊△ABC中,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是平面上△ABC外一點(diǎn),且DE=2,連接BE,將線段EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到線段EF,連接AF,CE.

(1)判斷△BEF的形狀,并說明理由;(2)求證:AF=CE;(3)當(dāng)點(diǎn)D,E,F(xiàn)在同一直線上時(shí),請(qǐng)你在備用圖中畫出符合條件的圖形,并求出此時(shí)BE的長(zhǎng).備用圖例2.(2022·吉林·九年級(jí)期末)如圖①,在中,,,點(diǎn),分別在邊,上,且,此時(shí),成立.(1)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),在圖②中補(bǔ)充圖形,并直接寫出的長(zhǎng)度;(2)當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周的過程中,與的數(shù)量關(guān)系和位置關(guān)系是否仍然成立?若成立,請(qǐng)你利用圖③證明,若不成立請(qǐng)說明理由;(3)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng),,三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出的長(zhǎng)度.例3.(2022·黑龍江·虎林市九年級(jí)期末)已知Rt△ABC中,AC=BC,∠ACB=90°,F(xiàn)為AB邊的中點(diǎn),且DF=EF,∠DFE=90°,D是BC上一個(gè)動(dòng)點(diǎn).如圖1,當(dāng)D與C重合時(shí),易證:CD2+DB2=2DF2;(1)當(dāng)D不與C、B重合時(shí),如圖2,CD、DB、DF有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出你的猜想,不需證明.(2)當(dāng)D在BC的延長(zhǎng)線上時(shí),如圖3,CD、DB、DF有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并加以證明.例4.(2023·山西大同·九年級(jí)期中)綜合與實(shí)踐:已知是等腰三角形,.(1)特殊情形:如圖1,當(dāng)∥時(shí),______.(填“>”“<”或“=”);(2)發(fā)現(xiàn)結(jié)論:若將圖1中的繞點(diǎn)順時(shí)針旋轉(zhuǎn)()到圖2所示的位置,則(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.(3)拓展運(yùn)用:某學(xué)習(xí)小組在解答問題:“如圖3,點(diǎn)是等腰直角三角形內(nèi)一點(diǎn),,且,,,求的度數(shù)”時(shí),小明發(fā)現(xiàn)可以利用旋轉(zhuǎn)的知識(shí),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,連接,構(gòu)造新圖形解決問題.請(qǐng)你根據(jù)小明的發(fā)現(xiàn)直接寫出的度數(shù).例5.(2023春·浙江·八年級(jí)專題練習(xí))邊長(zhǎng)為4的正方形ABCD與邊長(zhǎng)為2的正方形CEFG如圖1擺放,將正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,連接BG,DE.(1)如圖2,求證:△BCG≌△DCE;(2)如圖2,連接DG,BE,判斷DG2+BE2否為定值.若是,求這個(gè)定值若不是,說明理由;(3)如圖3,當(dāng)點(diǎn)G恰好落在DE上時(shí),求α的值.模型2.半角模型【模型解讀】半角模型概念:過多邊形一個(gè)頂點(diǎn)作兩條射線,使這兩條射線夾角等于該頂角一半思想方法:通過旋轉(zhuǎn)構(gòu)造全等三角形,實(shí)現(xiàn)線段的轉(zhuǎn)化1)正方形半角模型條件:四邊形ABCD是正方形,∠ECF=45°;結(jié)論:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④AEF的周長(zhǎng)=2AB;⑤CE、CF分別平分∠BEF和∠EFD。2)等腰直角三角形半角模型條件:ABC是等腰直角三角形,∠DAE=45°;結(jié)論:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等邊三角形半角模型(120°-60°型)條件:ABC是等邊三角形,BDC是等腰三角形,且BD=CD,∠BDC=120°,∠EDF=60°;結(jié)論:①△BDE≌△CDG;②△EDF≌△GDF;③EF=BE+FC;④AEF的周長(zhǎng)=2AB;⑤DE、DF分別平分∠BEF和∠EFC。4)等邊三角形半角模型(60°-30°型)條件:ABC是等邊三角形,∠EAD=30°;結(jié)論:①△BDA≌△CFA;②△DAE≌△FAE;③∠ECF=120°;④DE2=(BD+EC)2+;5)任意角度的半角模型(-型)條件:∠BAC=,AB=AC,∠DAE=;結(jié)論:①△BAD≌△CAF;②△EAD≌△EAF;③∠ECF=180°-。例1.(2023·福建·龍巖九年級(jí)期中)(1)【發(fā)現(xiàn)證明】如圖1,在正方形中,點(diǎn),分別是,邊上的動(dòng)點(diǎn),且,求證:.小明發(fā)現(xiàn),當(dāng)把繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°至,使與重合時(shí)能夠證明,請(qǐng)你給出證明過程.(2)【類比引申】①如圖2,在正方形中,如果點(diǎn),分別是,延長(zhǎng)線上的動(dòng)點(diǎn),且,則(1)中的結(jié)論還成立嗎?若不成立,請(qǐng)寫出,,之間的數(shù)量關(guān)系______(不要求證明)②如圖3,如果點(diǎn),分別是,延長(zhǎng)線上的動(dòng)點(diǎn),且,則,,之間的數(shù)量關(guān)系是_____(不要求證明).(3)【聯(lián)想拓展】如圖1,若正方形的邊長(zhǎng)為6,,求的長(zhǎng).例2.(2023·浙江·八年級(jí)假期作業(yè))如圖,在中,,,D、E是斜邊上兩點(diǎn),且,若,,,則與的面積之和為(

)A.36 B.21 C.30 D.22例3.(2023秋·湖北武漢·九年級(jí)??茧A段練習(xí))如圖,在△ABC中,AB=AC=2.∠BAC=120°,點(diǎn)D,E都在邊BC上,∠DAE=60°,若BD=2CE,求DE的長(zhǎng).例4.(2023·綿陽市八年級(jí)期中)在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系.(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是;(2)如圖2,點(diǎn)M、N在邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的結(jié)論還成立嗎?若成立請(qǐng)直接寫出你的結(jié)論;若不成立請(qǐng)說明理由.(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長(zhǎng)線上時(shí),探索BM、NC、MN之間的數(shù)量關(guān)系如何?并給出證明.例5.(2023·重慶市二模)回答問題(1)【初步探索】如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_______________;(2)【靈活運(yùn)用】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,上述結(jié)論是否仍然成立,并說明理由;(3)【拓展延伸】知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點(diǎn)E在CB的延長(zhǎng)線上,點(diǎn)F在CD的延長(zhǎng)線上,如圖3所示,仍然滿足EF=BE+FD,請(qǐng)直接寫出∠EAF與∠DAB的數(shù)量關(guān)系.模型3、旋轉(zhuǎn)中的對(duì)角互補(bǔ)模型【模型解讀】對(duì)角互補(bǔ)模型概念:對(duì)角互補(bǔ)模型特指四邊形中,存在一對(duì)對(duì)角互補(bǔ),而且有一組鄰邊相等的幾何模型。思想方法:解決此類問題常用的輔助線畫法主要有兩種:①過頂點(diǎn)做雙垂線,構(gòu)造全等三角形;②進(jìn)行旋轉(zhuǎn)的構(gòu)造,構(gòu)造手拉手全等。1)“共斜邊等腰直角三角形+直角三角形”模型(異側(cè)型)條件:如圖,已知∠AOB=∠DCE=90°,OC平分∠AOB.結(jié)論:①CD=CE,②OD+OE=OC,③.2)“斜邊等腰直角三角形+直角三角形”模型(同側(cè)型)條件:如圖,已知∠DCE的一邊與AO的延長(zhǎng)線交于點(diǎn)D,∠AOB=∠DCE=90°,OC平分∠AOB.結(jié)論:①CD=CE,②OE-OD=OC,③.3)“等邊三角形對(duì)120°模型”(1)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB.結(jié)論:①CD=CE,②OD+OE=OC,③.4)“等邊三角形對(duì)120°模型”(2)條件:如圖,已知∠AOB=2∠DCE=120°,OC平分∠AOB,∠DCE的一邊與BO的延長(zhǎng)線交于點(diǎn)D,結(jié)論:①CD=CE,②OD-OE=OC,③.5)“120°等腰三角形對(duì)60°模型”條件:△ABC是等腰三角形,且∠BAC=120°,∠BPC=60°。結(jié)論:①PB+PC=PA;例1.(2023·江蘇·八年級(jí)專題練習(xí))在△ABC中,∠BAC=90°,AB=AC,D為BC的中點(diǎn).(1)如圖1,E、F分別是AB、AC上的點(diǎn),且BE=AF、求證:△DEF是等腰直角三角形經(jīng)過分析已知條件AB=AC,D為BC的中點(diǎn).容易聯(lián)想等腰三角形三線合一的性質(zhì),因此,連結(jié)AD(如圖2),以下是某同學(xué)由已知條件開始,逐步按層次推出結(jié)論的流程圖.請(qǐng)幫助該同學(xué)補(bǔ)充完整流程圖.補(bǔ)全流程圖:①,②∠EDF=(2)如果E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),仍有BE=AF,其他條件不變,試猜想△DEF是否仍為等腰直角三角形?請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形、先作出判斷,然后給予證明.例2.(2023·山東棗莊·中考模擬)在中,,,于點(diǎn),(1)如圖1,點(diǎn),分別在,上,且,當(dāng),時(shí),求線段的長(zhǎng);(2)如圖2,點(diǎn),分別在,上,且,求證:;(3)如圖3,點(diǎn)在的延長(zhǎng)線上,點(diǎn)在上,且,求證:;例3.(2023·浙江·八年級(jí)專題練習(xí))如圖1,,,MN是過點(diǎn)A的直線,過點(diǎn)D作于點(diǎn)B,連接CB;過點(diǎn)C作,與MN交于點(diǎn)E.(1)連接AD,AD是AC的______倍;(2)直線MN在圖1所示位置時(shí),可以得到線段BD和AE的數(shù)量關(guān)系是______,與BC之間的數(shù)量關(guān)系是______,請(qǐng)證明你的結(jié)論;(3)直線MN繞點(diǎn)A旋轉(zhuǎn)到圖2的位置,若,,則AB的長(zhǎng)為______(直接寫結(jié)果);(4)直線MN繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),直接寫出線段BA,BC,BD之間的數(shù)量關(guān)系______.例4.(2023四川宜賓八年級(jí)期末)如圖1,,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn)E.(1)求證:;(2)圖1中,若,求的長(zhǎng);(3)如圖2,,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn).若,求四邊形的面積.例5.(2023湖北省宜城市八年級(jí)期末)如圖,已知∠AOB=120°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)60°角的頂點(diǎn)與點(diǎn)C重合,它的兩條邊分別與直線OA、OB相交于點(diǎn)D、E.(1)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖1),請(qǐng)猜想OE+OD與OC的數(shù)量關(guān)系,并說明理由;(2)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),到達(dá)圖2的位置,(1)中的結(jié)論是否成立?并說明理由;(3)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA的反向延長(zhǎng)線相交時(shí),上述結(jié)論是否成立?若成立,請(qǐng)給于證明;若不成立,線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.課后專項(xiàng)訓(xùn)練1.(2023·江蘇·八年級(jí)專題練習(xí))如圖,O為正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①可由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+2;⑤,其中正確的是(

)A.①②③ B.①②③⑤ C.①②③④ D.①②③④⑤2.(2022·成都市·八年級(jí)期末)如圖,在邊長(zhǎng)為4的正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E在BD上,連接CE,作EF⊥CE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF交BD于點(diǎn)H,延長(zhǎng)CE交AD于點(diǎn)M,連接FM,則下列結(jié)論:①點(diǎn)E到AB,BC的距離相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,則BF=.正確的有()個(gè).A.1 B.2 C.3 D.43.(2022春·山東煙臺(tái)·八年級(jí)校考期中)如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,若F是BC的中點(diǎn),且∠EDF=45°,則DE的長(zhǎng)為_____.4.(2022·廣東深圳·八年級(jí)期末)如圖,△ABC中,∠BAC=120°,AB=AC,點(diǎn)D為BC邊上一點(diǎn).點(diǎn)E為線段CD上一點(diǎn),且CE=2,AB=,∠DAE=60°,則DE的長(zhǎng)為______.5.(2023·吉林松原·九年級(jí)統(tǒng)考期中)如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△ADC,連接OD.(1)當(dāng)時(shí),°;(2)當(dāng)時(shí),°;(3)若,,,則OA的長(zhǎng)為.6.(2022.成都市八年級(jí)期中)在中,,,于點(diǎn),(1)如圖1,點(diǎn),分別在,上,且,當(dāng),時(shí),求線段的長(zhǎng);(2)如圖2,點(diǎn),分別在,上,且,求證:;(3)如圖3,點(diǎn)在的延長(zhǎng)線上,點(diǎn)在上,且,求證:;7.如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點(diǎn)A的直線CD⊥MN于點(diǎn)D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點(diǎn)B作BE⊥BD,交MN于點(diǎn)E,進(jìn)而得出:DC+AD=BD.(2)探究證明:將直線MN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到圖2的位置寫出此時(shí)線段DC,AD,BD之間的數(shù)量關(guān)系,并證明;8.如圖,已知∠DCE與∠AOB,OC平分∠AOB.(1)如圖1,∠DCE與∠AOB的兩邊分別相交于點(diǎn)D、E,∠AOB=∠DCE=90°,試判斷線段CD與CE的數(shù)量關(guān)系,并說明理由.以下是小宇同學(xué)給出如下正確的解法:解:CD=CE.理由如下:如圖1,過點(diǎn)C作CF⊥OC,交OB于點(diǎn)F,則∠OCF=90°,…請(qǐng)根據(jù)小宇同學(xué)的證明思路,寫出該證明的剩余部分.(2)你有與小宇不同的思考方法嗎?請(qǐng)寫出你的證明過程.(3)若∠AOB=120°,∠DCE=60°.①如圖3,∠DCE與∠AOB的兩邊分別相交于點(diǎn)D、E時(shí),(1)中的結(jié)論成立嗎?為什么?線段OD、OE、OC有什么數(shù)量關(guān)系?說明理由.②如圖4,∠DCE的一邊與AO的延長(zhǎng)線相交時(shí),請(qǐng)回答(1)中的結(jié)論是否成立,并請(qǐng)直接寫出線段OD、OE、OC有什么數(shù)量關(guān)系;如圖5,∠DCE的一邊與BO的延長(zhǎng)線相交時(shí),請(qǐng)回答(1)中的結(jié)論是否成立,并請(qǐng)直接寫出線段OD、OE、OC有什么數(shù)量關(guān)系.9.(河南省南陽市方城縣2021-2022學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題)提出問題:如圖1,已知OC平分∠AOB,點(diǎn)D、E分別在OA,OB上.若∠ODC=∠OEC=90°,求證:CD=CE.思路梳理:(1)請(qǐng)根據(jù)思路梳理的過程填空.證法1:由OC平分∠AOB,∠ODC=∠OEC,OC=OC,可得≌,則CD=CE.證法2:由OC平分∠AOB,∠ODC=∠OEC=90°,則CD=CE,其理論依據(jù)是.類比探究:(2)如圖2,已知OC平分∠AOB,點(diǎn)D、E分別在OA,OB上.若∠ODC+∠OEC=180°,求證:CD=CE.拓展遷移:(3)如圖3,已知OC平分∠AOB,點(diǎn)D在OA的反向延長(zhǎng)線上,點(diǎn)E在OB上,且∠ODC=∠OEC,若OC=4,CE=5,點(diǎn)C到OB的距離是3,則OD+OE的值是.(直接寫出結(jié)果,不說明理由)10.(2023春·江蘇·八年級(jí)期中)請(qǐng)閱讀下列材料:已知:如圖(1)在中,,點(diǎn)D、E分別為線段上兩動(dòng)點(diǎn),若.探究線段三條線段之間的數(shù)量關(guān)系.小明的思路是:把繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到,連接,使問題得到解決.請(qǐng)你參考小明的思路探究并解決下列問題:(1)猜想三條線段之間存在的數(shù)量關(guān)系式,直接寫出你的猜想;(2)當(dāng)動(dòng)點(diǎn)E在線段上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段延長(zhǎng)線上時(shí),如圖(2),其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請(qǐng)說明你的猜想并給予證明;(3)已知:如圖(3),等邊三角形中,點(diǎn)D、E在邊上,且,請(qǐng)你找出一個(gè)條件,使線段能構(gòu)成一個(gè)等腰三角形,并求出此時(shí)等腰三角形頂角的度數(shù).11.(2022秋·陜西延安·八年級(jí)統(tǒng)考期末)【問題提出】(1)如圖①,在四邊形中,,,E、F分別是邊BC、CD上的點(diǎn),且.求證:;【問題探究】(2)如圖②,在四邊形中,,,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)說明理由;若不成立,請(qǐng)寫出它們之間的數(shù)量關(guān)系,并說明理由.12.(2023春·四川達(dá)州·八年級(jí)??茧A段練習(xí))倡導(dǎo)研究性學(xué)習(xí)方式,著力教材研究,習(xí)題研究,是學(xué)生跳出題海,提高學(xué)習(xí)能力和創(chuàng)新能力的有效途徑.(1)【問題背景】已知:如圖1,點(diǎn)E、F分別在正方形的邊上,,連接,則之間存在怎樣的數(shù)量關(guān)系呢?(分析:我們把繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至,點(diǎn)G、B、C在一條直線上.)于是易證得:和,所以.直接應(yīng)用:正方形的邊長(zhǎng)為6,,則的值為.(2)【變式練習(xí)】已知:如圖2,在中,,D、E是斜邊上兩點(diǎn),且,請(qǐng)寫出之間的數(shù)量關(guān)系,并說明理由.(3)【拓展延伸】在(2)的條件下,當(dāng)繞著點(diǎn)A逆時(shí)針一定角度后,點(diǎn)D落在線段BC上,點(diǎn)E落在線段BC的延長(zhǎng)線上,如圖3,此時(shí)(2)的結(jié)論是否仍然成立,并證明你的結(jié)論.

13.(2023·河南洛陽·八年級(jí)??茧A段練習(xí))【問題發(fā)現(xiàn)】(1)如圖1,和均為等邊三角形,點(diǎn)B,D,E在同一直線上,連接,容易發(fā)現(xiàn):①的度數(shù)為;②線段、之間的數(shù)量關(guān)系為;【類比探究】(2)如圖2,和均為等腰直角三角形,,點(diǎn)B,D,E在同一直線上,連接,試判斷的度數(shù)以及線段、、之間的數(shù)量關(guān)系,并說明理由;【問題解決】(3)如圖3,,,,,則的值為.14.(2023·重慶市九年級(jí)階段練習(xí))【問題背景】如圖1,P是等邊三角形ABC外一點(diǎn),∠APB=30°,則PA2+PB2=PC2.小明為了證明這個(gè)結(jié)論,將△PAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,請(qǐng)根據(jù)此思路完成其證明.【遷移應(yīng)用】如圖2,在等腰直角三角形ABC中,BA=BC,∠ABC=90°,點(diǎn)P在△ABC外部,且∠BPC=45°,若△APC的面積為5.5,求PC.15.(2023春·廣東揭陽·九年級(jí)??计谥校┮阎猂t△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論