




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市青山區(qū)2024-2025學年高三下學期第二次三模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內切圓的半徑為()A. B. C. D.2.設復數滿足為虛數單位),則()A. B. C. D.3.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.4.設函數,若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.5.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件6.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.37.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.8.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形9.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.10.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.11.設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.12.如圖,平面四邊形中,,,,,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為正實數,若則的取值范圍是__________.14.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.15.已知集合,其中,.且,則集合中所有元素的和為_________.16.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調查數據,人數如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現要在所有參與調查的人中用分層抽樣的方法抽取個人做進一步的調研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.18.(12分)某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據多年的生產數據和經驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數為,求及的數學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.19.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.20.(12分)已知函數,的最大值為.求實數b的值;當時,討論函數的單調性;當時,令,是否存在區(qū)間,,使得函數在區(qū)間上的值域為?若存在,求實數k的取值范圍;若不存在,請說明理由.21.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經出現了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知函數在上的最大值為3.(1)求的值及函數的單調遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
設左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內切圓的圓心分割3個三角形的面積之和可得內切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設內切圓的半徑為r,所以三角形的面積,所以,解得,故選:B本題考查求雙曲線的方程和雙曲線的性質及三角形的面積的求法,內切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.2.B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.3.C【解析】
設出兩人到達小王的時間,根據題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數學運算能力.4.A【解析】
由求出范圍,結合正弦函數的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.本題考查正弦型函數的性質,整體代換是解題的關鍵,屬于基礎題.5.A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.6.C【解析】
先根據奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。本題主要考查函數性質奇偶性的應用。7.B【解析】
根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.8.D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.9.D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.本題考查的是向量的數量積的運算和模的計算,屬基礎題。10.C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.11.D【解析】
由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據求數列的通項知識可得選項.【詳解】由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數列是以為公比的等比數列,而,所以,∴當時,,故選:D.本題考查幾何體中的概率問題,關鍵在于運用遞推的知識,得出相鄰的項的關系,這是常用的方法,屬于難度題.12.C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據,可得,進而,有,而,令,得到,再用導數法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:本題主要考查基本不等式的應用和導數法求最值,還考查了運算求解的能力,屬于難題,14.【解析】
基本事件總數n126,其中三種顏色的球都有包含的基本事件個數m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數m72,∴其中三種顏色的球都有的概率是p.故答案為:.本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.15.2889【解析】
先計算集合中最小的數為,最大的數,可得,求和即得解.【詳解】當時,集合中最小數;當時,得到集合中最大的數;故答案為:2889本題考查了數列與集合綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.16.32【解析】
由已知可得抽取的比例,計算出所有被調查的人數,再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調查的總人數為人,則分層抽樣的樣本容量是人.故答案為:32本題考查分層抽樣中求樣本容量,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)2【解析】
(1)轉化條件得,進而可得,即可得解;(2)由化簡可得,由結合三角函數的性質即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.本題考查了平面向量平行、正弦定理以及三角恒等變換的應用,考查了三角函數的性質,屬于中檔題.18.(1)見解析(2)需要,見解析【解析】
(1)由零件的長度服從正態(tài)分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.本題考查正態(tài)分布的應用,考查二項分布的期望,考查補集思想的應用,考查分析能力與數據處理能力.19.(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可?。?λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.20.(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數研究函數的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區(qū)間,求得的范圍,可得函數的減區(qū)間;(3)假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數單調遞增;當時,,函數單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內單調遞增,所以恒成立,所以函數在區(qū)間內單調遞增.假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,即方程在區(qū)間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數在區(qū)間內單調遞增,故恒成立,所以,所以函數在區(qū)間內單調遞增,所以方程在區(qū)間內不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數在區(qū)間上的值域是.點睛:本題主要考查利用導數判斷函數的單調性以及函數的最值值,屬于難題.求函數極值、最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網絡管理員考試必知要點試題及答案
- 用戶反饋的計算機二級VB試題與答案
- 軟考網絡管理員評估試題及答案合集
- 2025年軟件設計師考試快速掌握技巧試題及答案
- 2025年不同文化對公司戰(zhàn)略的挑戰(zhàn)及試題及答案
- 未來公司的治理結構與風險控制探索試題及答案
- 行政法學考試常見知識點:試題及答案
- 計算機教程與編程實踐試題及答案
- 2025租房合同協(xié)議書
- 網絡架構所需技能分析試題及答案
- 消防安全工作例會制度
- GB/T 9634.4-2007鐵氧體磁心表面缺陷極限導則第4部分:環(huán)形磁心
- 2022年阜寧縣(中小學、幼兒園)教師招聘考試《教育綜合知識》試題及答案解析
- GB/T 15608-2006中國顏色體系
- 建筑架子工(普通腳手架)操作技能考核標準
- 病假醫(yī)療期申請單(新修訂)
- 95598工單大數據分析及壓降策略
- 《游園不值》-完整版課件
- 大連銀行招聘考試最新筆試復習材料題目內容試卷真題復習
- 卷煙紙生產工藝
- 肩關節(jié)鏡下肩袖修補術的護理查房ppt
評論
0/150
提交評論