2025屆新高三開學摸底考試數學試卷(新高考)(解析版)_第1頁
2025屆新高三開學摸底考試數學試卷(新高考)(解析版)_第2頁
2025屆新高三開學摸底考試數學試卷(新高考)(解析版)_第3頁
2025屆新高三開學摸底考試數學試卷(新高考)(解析版)_第4頁
2025屆新高三開學摸底考試數學試卷(新高考)(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新高三開學摸底考試卷(新高考通用)

數學

(考試時間:120分鐘試卷滿分:150分)

注意事項:

1.答卷前,考生務必將自己的姓名、準考證號等填寫在答題卡和試卷指定位置上。

2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑。如需改

動,用橡皮擦干凈后,再選涂其他答案標號?;卮鸱沁x擇題時,將答案寫在答卡上。寫在本

試卷上無效。

3.考試結束后,將本試卷和答題卡一并交回。

一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項

是符合題目要求的。

1.(2024?廣西?模擬預測)已知集合A={x|-2<尤<3},JB=|X|x2-5x<O,xeN},則AB=()

A.{.r|0<x<3}B.[x\-2<x<5]C.{0,1,2}D.{1,2}

【答案】D

【分析】先求集合B,注意xeN,再求AcB.

【詳解】X2-5X<0^0<X<5,又因為xeN,所以2={1,2,3,4},得AB={1,2}.

故選:D.

2.(2024.河南.模擬預測)已知復數z滿足-■^=-2"則z的虛部為()

z

C.1D.±

A.-iB.-i

510510

【答案】c

【分析】根據條件,利用復數的四則運算,即可求出結果.

4z—i

【詳解】因為——=-4,所以4iz+l=2z,所以1=(2-4i)z,

Z

12+4i2+4i11.1

SirDIZ=----------=-----------------------------=-----------=——+7,所以Z的虛部為£,

“以2-4i(2-4i)(2+4i)2010。5

故選:C.

3.(23-24高三下?陜西西安?階段練習)已知向量。=(狐1),6=(1,〃),若(。+6)//(。-6),則()

A.mn=\B.mn=—lC.m—n=OD.帆_討=0

【答案】A

【分析】利用平面向量共線的坐標表示計算即可.

【詳解】6=(〃z+l,l+w),a-b=(m-l,l-n),

(a+Z?)〃(a—6),;.(加+1)(1—〃)=(〃?—1乂1+〃),化簡得w7〃=l.

故選:A.

4.(23-24高一下?廣東廣州?期中)某校開展數學建?;顒?,有建模課題組的學生選擇測量某山峰的高度,

為此,他們設計了測量方案.如圖,在山腳A測得山頂P的仰角為45。,沿傾斜角為15。的斜坡向上走了90

米到達2點(A,B,P,Q在同一個平面內),在2處測得山頂尸的仰角為60。,則山高尸。為()米

A.45(76-72)B.45(n+&)C.90(A/3-1)D.90(石+1)

【答案】B

【分析】在4AB尸中,利用正弦定理求",進而在Rt.PA。中求山的高度.

【詳解】依題意,ZPAQ=45,ZBAQ=15,貝U?PAB30,ZAPQ=45,

又NPBC=60,貝IJ/BPC=30,即有N3PA=15,ZPBA=}35,

APAB

在,AB尸中,AB=90,由正弦定理得

sinZABP-sinZAPB?

[7_6

且sin15=sin(60-45)=sin60cos45-cos60sin45=---------

ABsin/ABP90sinl35。第號血④

則”=

sinZAPBsin15°"一夜a_垃,

4

在RtP4Q中,尸。=APsin45=髻%x也=45(#+衣,

A/6—A/22

所以山高尸。為45(#+&)米

故選:B

5.(2024.黑龍江哈爾濱?模擬預測)已知sinasin[a+《J=cosasin[三-aj,貝i|tan12a+?J=()

A.2-73B.-2-y/3C.2+?D.-2+白

【答案】B

【分析】由兩角和差公式、二倍角公式逆用可得tan2a=6,進一步結合兩角和的正切公式即可得解.

【詳解】由題意^■sin。a+^-sinacosa=^^cos2a—^sinacosa,BP^-cos2a=—sin2a,

222222

/\tan2a+tan—①一四匚一2一技

即tanla=6,所以tan2a+-=----------------—

I4Ji_tan2atan—1-73-2

4

故選:B.

6.(2023?遼寧鞍山?一模)函數是定義在R上的偶函數,且/(l+x)=/(l-x),若xe[0』,/(%)=2\

則/(2023)=()

A.4B.2C.1D.0

【答案】B

【分析】根據〃l+x)=〃l-X),結合f(x)是定義在R上的偶函數,易得函數的周期為2,然后由

/(2023)=/(1011x2+l)=/(I)求解.

【詳解】因為〃1+X)=〃1-力,且/'(X)是定義在R上的偶函數,

所以〃l+x)"(xT,

令r=x-l,則x=t+l,

所以〃r+2)=f⑺,即以x)=f(x+2),

所以函數/(x)的周期為2,

所以“2023)=7(1011x2+1)=/(1)=2.

故選:B.

7.(23-24高三上?福建?階段練習)函數〃x)=sinx+2卜inx|,xe[0,2K]的圖象與直線y=左有且僅有兩個不

同的交點,則上的取值范圍是()

A.(0,1)B.(0,3)C.(1,3)D.(0,2)

【答案】C

【解析】先分類討論去絕對值號,得出函數/(X)的解析式,然后畫出函數/(力與,=左的圖象進行判斷.

,,,,f3sinx,0<x<7r

【詳解】/'(x)=sm尤+2同11工=|.,

[-sinx,7i<x<27T

如圖所示,

要使〃句=$也%+2版11R,彳口0,2句的圖象與直線,=左有且僅有兩個不同的交點,則只需1〈發(fā)<3.

故選:C.

【點睛】本題考查根據函數圖象的交點個數求參數的取值范圍,較簡單,畫出函數的圖象是關鍵.

22

8.(2024?山東?模擬預測)己知雙曲線E:、一2=1(。>0力>。)的左、右焦點分別為6,K,過F?的直線

cib

與E的右支交于A,B兩點,且忸囚=2|A詞,若=則雙曲線E的離心率為()

A.上B.叵C.逑D.畫

333

【答案】B

【分析】設|9|=乙則怛閶=2『,根據雙曲線的定義,可得|明|和|班|,再在直角三角形中,利用勾股定

理可得關于。,。的關系,可得雙曲線的離心率.

【詳解】如圖:設|然|=/,則怛閭=2r,

根據雙曲線的定義,可得|M|=2a+r,|%|=2。+2二,

因為曲-河二。,所以/創(chuàng)轉=90。,

用、』M「+|A為「小丹「n](2a+ry+r=(2c)2

耳!以)=><

2222

\AF1|+|AB|=\BFf[{2a+Z)+(3r)=(2〃+

由(2a+l)+(3,)=(2a+2,)—2a=3%,

代入(2a+t)2+r=(2c)2可得17a2=%2ne=£=姮.

a3

故選:B

【點睛】方法點睛:選擇填空題中,出現圓錐曲線的問題,首先要考慮圓錐曲線定義的應用,不能用定義,

再考慮其他方法.

二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題

目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.

9.(2024?廣東汕頭.一模)某次數學考試后,為分析學生的學習情況,某校從某年級中隨機抽取了100名學

生的成績,整理得到如圖所示的頻率分布直方圖.為進一步分析高分學生的成績分布情況,計算得到這100名

學生中,成績位于[80,90)內的學生成績方差為12,成績位于[90,100)內的同學成績方差為10.則()

參考公式:樣本劃分為2層,各層的容量、平均數和方差分別為:加、輸、7、s;.記樣本平均數為

石,樣本方差為$2,$2=/^卜;+任一砌2]+'^卜;+(》一同21

m+nL」m+n'-」

B.估計該年級學生成績的中位數約為77.14

C.估計該年級成績在80分及以上的學生成績的平均數為87.50

D.估計該年級成績在80分及以上的學生成績的方差為30.25

【答案】BCD

【分析】利用頻率分布直方圖中,所有直方圖的面積之和為1,列等式求出實數。的值,可判斷A選項;利

用中位數的定義可判斷B選項;利用總體平均數公式可判斷C選項;利用方差公式可判斷D選項.

【詳解】對于A選項,在頻率分布直方圖中,所有直方圖的面積之和為1,

則(2a+3a+7a+6a+2a)xl0=200a=l,解得a=0.005,A錯;

對于B選項,前兩個矩形的面積之和為(2a+3a)x10=50a=0.25<0.5,

前三個矩形的面積之和為(2a+3a+7a)xl0=120a=0.6>0.5,

設計該年級學生成績的中位數為機,則〃?七(70,80),

根據中位數的定義可得025+(機-70)x0.035=0.5,解得相。77.14,

所以,估計該年級學生成績的中位數約為77.14,B對;

對于C選項,估計成績在80分以上的同學的成績的平均數為

6ax85+2a*95=87.5分,C對;

6a+2a6a+2a

對于D選項,估計該年級成績在80分及以上的學生成績的方差為

1[12+(87.5-85)1+[[10+(87.5一95)1=30.25,D對.

故選:BCD.

10.(2024?河南?模擬預測)已知函數/(x)=sin(3x+:j,下列說法正確的是()

A.的最小正周期為T

B.點借o]為〃尤)圖象的一個對稱中心

C.若/(尤)=。(。的在4-白餐上有兩個實數根,則且

L189J2

D.若的導函數為了'⑺,則函數)=/(x)+/'(x)的最大值為亞

【答案】ACD

【分析】對于A,直接由周期公式即可判斷;對于B,直接代入檢驗即可;對于C,畫出圖形,通過數形結

合即可判斷;對于D,求得后結合輔助角公式即可得解.

【詳解】由題意可得T=],故A正確;

/^=sin^=1^O,所以信,。)不是/⑺圖象的一個對稱中心,故B錯誤;

令t=3x+巴,由一二得至VfV女,

318963

(冗、77JT

根據題意可轉化為直線y=a與曲線/(x)=sin3x+w,xe有兩個交點,

I5)1oy

數形結合可得迫Wa<l,故C正確;

2

設尸⑺為“X)的導函數,

則/(%)+/((x)=sin+3cossin(3x+g+ej<A/10,其中tan。=3,

當且僅當3工+巴+9=四+2也,左eZ,即當且僅當x=-0+2+也MeZ時等號成立,故D正確,

323183

故選:ACD.

11.(2022?山東濟南?一模)平面內到兩定點距離之積為常數的點的軌跡稱為卡西尼卵形線,它是1675年卡

西尼在研究土星及其衛(wèi)星的運行規(guī)律時發(fā)現的.已知在平面直角坐標系中,M(-2,0),N(2,0),動點尸

滿足|出/卜|「叫=5,其軌跡為一條連續(xù)的封閉曲線C.則下列結論正確的是()

A.曲線C與y軸的交點為(0,-1),(O,l)B.曲線C關于x軸對稱

C.PMV面積的最大值為2D.|。尸|的取值范圍是[1,3]

【答案】ABD

【分析】根據給定條件,求出曲線C的方程,由x=。判斷A;由曲線方程對稱性判斷B;取特值計算判斷

C;求出工?的范圍計算判斷D作答.

【詳解】設點P(x,N),依題意,?+2)2+力?-2)2+產]=25,整理得:d+/=+25-4,

對于A,當尤=0時,解得y=±l,即曲線C與y軸的交點為(0,-1),(0,1),A正確;

對于B,因d+(_"=d+/=Ji6d+25-4,由換,方程不變,曲線C關于無軸對稱,B正確;

對于C,當Y=_|時,y2=|,即點p(等,當)在曲線C上,S崢=;即\老=瓜'C不正確;

對于D,由/=,16/+25-4-%220得:X4-8.X2-9<0,解得04/49,

于是得|OP「='+5+25-4e[1,9],解得14|。尸區(qū)3,D正確.

故選:ABD

【點睛】結論點睛:曲線C的方程為尸(x,y)=o,(1)如果2-X,y)=。,則曲線C關于y軸對稱;

⑵如果P(x,-y)=0,則曲線C關于x軸對稱;(3)如果歹(r,-y)=0,則曲線C關于原點對稱.

第二部分(非選擇題共92分)

三、填空題:本題共3小題,每小題5分,共15分。

12.(2024.江西?二模)已知非零向量。,6滿足2同=忖,且a_L(a-6),則的夾角大小為.

【答案】|

【分析】由向量垂直的數量積表示和數量積的定義式運算即可.

【詳解】因為設向量。與6的夾角為6,

所以〃?(〃_/?)=a?_[.)=同2_同..cos8=0,

1

所以同0—2卜1.同cos夕=0,所以cos。=萬.

TT

因為0<。<兀,所以。=g.

所以向量a,6的夾角大小為巳.

故答案為:y.

13.(23-24高二下?四川廣安?階段練習)已知直線>=去+6既是曲線y=lnx的切線,也是曲線y=-ln(-x)

的切線,貝必+6=.

【答案】-/e-1

e

【分析】利用導數的幾何意義計算即可.

【詳解】設曲線y=lnx與y=-ln(-x)的切點分別為(%,%),(超,%),

易知兩曲線的導函數分別為y=工

X

MX2b=0

1+b--ink

所以kx+b=]nxn=><

lx-1+b=\nkk=-

kx2+b=-ln(-x2)e

則A+b=L

e

故答案為:—.

e

14.(2024?安徽安慶?三模)一個不透明的袋子裝有5個完全相同的小球,球上分別標有數字1,2,3,4,4.現

甲從中隨機摸出一個球記下所標數字后放回,乙再從中隨機摸出一個球記下所標數字,若摸出的球上所標

數字大即獲勝(若所標數字相同則為平局),則在甲獲勝的條件下,乙摸到2號球的概率為.

【答案】|

【分析】設事件“甲獲勝”為事件A,事件“乙摸到2號球”為事件3,由古典概率公式求出P(A),P(AB),再

由條件概率求解即可.

【詳解】設事件“甲獲勝”為事件A,事件“乙摸到2號球,,為事件B,

1+2+CC」,“必=C;_3

《?C二25'

i

故答案為:

四、解答題:本題共5小題,共77分。解答應寫出文字說明、證明過程或演算步聚。

15.(2024?湖南益陽?三模)已知。、b,c分另I」是44BC內角A,B,C的對邊,(b-a)cosC=c(cosA-cosB),

b2=2ac.

⑴求cosC;

(2)若448c的面積為JI?,求J

7

【答案】(1)(2)2.

O

【解析】(1)由已知結合正弦定理及和差角公式進行化簡,然后結合余弦定理可求;

(2)由已知結合三角形的面積公式即可直接求解.

【詳解】(1)由S—a)cosC=c(cosA-cos8)及正弦定理可得,

sinBcosC-sinAcosC=sinCcosA-sinCcosB,

所以sinBcosC+sinCcosB=sinCcosA+sinAcosC,

即sin(B+C)=sin(A+C),

所以sinA=sinB,

所以a=

因為。2=lac-2bc,

所以Z?=2c,

222

由余弦定理可得,cose:“2:%2;。24C+4C-C_7

2ab2x2cx2c8

(2)由(1)知sinC=n=半

因為2MBe的面積為止,所以LabsinC=^a2x@l=拒,解可得。=4,

228

貝fJc=L=2

2

【點睛】本題主要考查了正弦定理,余弦定理,和差角公式及三角形的面積公式在求解三角形中的應用,

屬于中檔試題.

22

16.(23-24高二上?江蘇徐州?階段練習)已知橢圓C:斗=1(a>b>0)的一個焦點為網2,0),且離

ab

心率為近

3

⑴求橢圓C的方程;

(2)直線/:y=x+7"與橢圓C交于A,B兩點,若ABO面積為G,求直線/的方程.

22

【答案】⑴土+工=1

62

(2)y=x±2

【分析】(1)根據焦點坐標和離心率求出a,c,從而求出6,即可求解方程;

(2)聯(lián)立直線與橢圓方程,韋達定理求出弦長,利用點到直線的距離求出高,根據面積建立方程求解即可.

【詳解】(1)由焦點為尸(2,0)得c=2,又離心率e=£=逅,得到〃=指,

a3

22

所以/=°2一°2=6一4=2,所以橢圓C的方程為工+匕=1.

62

⑵設4(Xi,yi),B(x2ly2),

fx2y2,

聯(lián)立v62,消y得4/+6mx+3--6=0,

y=x+m

2222

A=36m-16(3m—6)=-12m+96>0,得至I」m<8,

由韋達定理得,玉+%-當,不々=即』,

M也

2

又因為AB=個1+k\x2—x1\

H

又原點到直線的距離為4=0,

所以S480=34|陰=gxMx一

02

所以m4-8m2+16=0,所以:"2=4,B|]m=±2,滿足加?<8,

所以直線/的方程為y=x±2.

17.(2024?河南?三模)如圖,在四棱錐尸-ABCD中,平面B4B_L平面ABC。/%_LAB,A8〃C£>,且

AB=2CD=2AD=2BC=2AP=2.

(1)證明:平面PAC_L平面P2C;

(2)求平面PAD與平面PBC夾角的正弦值.

設平面尸5c的法向量%=(m,n,p),

n2-PB=-m+2〃=0

則,n#,p,令P=l,得%=(2百,6,1),

n?BC=-----F------=0

I0222

21

設平面PAD與平面尸5C的夾角為,,則cos6=^^^=不二二:,

匐同2x44

所以平面MD與平面P8C夾角的正弦值為J1-COS26=史.

4

18.(2024?廣東茂名?二模)在一場乒乓球賽中,甲、乙、丙、丁四人角逐冠軍.比賽采用“雙敗淘汰制”,具

體賽制為:首先,四人通過抽簽兩兩對陣,勝者進入“勝區(qū)”,敗者進入“敗區(qū)”;接下來,“勝區(qū)”的兩人對陣,

勝者進入最后決賽;“敗區(qū)”的兩人對陣,敗者直接淘汰出局獲第四名,緊接著,“敗區(qū)”的勝者和“勝區(qū)”的敗

者對陣,勝者晉級最后的決賽,敗者獲第三名;最后,剩下的兩人進行最后的冠軍決賽,勝者獲得冠軍,

敗者獲第二名.甲對陣乙、丙、丁獲勝的概率均為p(O<p<l),且不同對陣的結果相互獨立.

(1)若。=0.6,經抽簽,第一輪由甲對陣乙,丙對陣??;

①求甲獲得第四名的概率;

②求甲在“雙敗淘汰制”下參與對陣的比賽場數的數學期望;

(2)除“雙敗淘汰制”外,也經常采用“單敗淘汰制”:抽簽決定兩兩對陣,勝者晉級,敗者淘汰,直至決出最

后的冠軍.哪種賽制對甲奪冠有利?請說明理由.

【答案】⑴①006;②3.128

(2)答案見解析..

【分析】(1)結合對立事件概率和獨立事件概率公式求解即可;

(2)結合對立事件概率和獨立事件概率公式比較計算.

【詳解】⑴①記“甲獲得第四名”為事件A,則尸⑷=(1-0.6)2=0.16;

②記在甲在“雙敗淘汰制”下參與對陣的比賽場次為隨機變量X,

則X的所有可能取值為2,3,4,

連敗兩局:P(X=2)=(1-0.6)2=0.16,

X=3可以分為:連勝兩局,第三局不管勝負;負勝負;勝負負;

x=3)=0.62+(1-0.6)X0.6X(1-0.6)+0.6X(1-0.6)X(1-0.6)=0.552,

p(X=4)=(1-0.6)x0.6x0.6+0.6x(1-0.6)x0.6=0.288;

故X的分布列如下:

X234

P0.160.5520.288

故數學期望E(X)=2x0.16+3x0.552+4x0.288=3.128;

(2)“雙敗淘汰制”下,甲獲勝的概率尸=03+0(1—。)22+(1-2)23=(3—2。)/,

在“單敗淘汰制”下,甲獲勝的概率為加,

由(3-2p)p3-p2=p2(3/?-2/?2-l)=/?2(2p-l)(l-^>),且0<P<1

所以。時,(3-2p)p3>p2,“雙敗淘汰制”對甲奪冠有利;

時,(3—“單敗淘汰制,,對甲奪冠有利;

P=g時,兩種賽制甲奪冠的概率一樣.

19.(2024?河南信陽.二模)已知函數y=〃尤),其中〃尤)=g/-&,ZeR.若點A在函數y=〃尤)的圖

像上,且經過點A的切線與函數y=/(x)圖像的另一個交點為點8,則稱點8為點A的一個“上位點”,現有

函數y=〃x)圖像上的點列監(jiān),M2,Mn,使得對任意正整數”,點心都是點吃+1的一個“上位

點”.

(1)若左=0,請判斷原點。是否存在“上位點”,并說明理由;

⑵若點Ml的坐標為(310),請分別求出點〃2、AG的坐標;

⑶若M的坐標為(3,0),記點M”到直線y=,"的距離為力.問是否存在實數機和正整數T,使得無窮數列辦、

dT+l....辦+“…嚴格減?若存在,求出實數機的所有可能值;若不存在,請說明理由.

【答案】(1)原點。不存在“上位點”,理由見解析

⑵點場的坐標為(。,0),點M的坐標為

2

⑶存在,m=--

【分析】(1)先求得函數經過點。的切線方程,再

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論