2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題含解析_第1頁
2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題含解析_第2頁
2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題含解析_第3頁
2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題含解析_第4頁
2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省青島市三十九中學高一數(shù)學第二學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為奇函數(shù),當時,則時,A. B.C. D.2.已知某區(qū)中小學學生人數(shù)如圖所示,為了解學生參加社會實踐活動的意向,擬采用分層抽樣的方法來進行調查。若高中需抽取20名學生,則小學與初中共需抽取的人數(shù)為()A.30 B.40 C.70 D.903.生活中有這樣一個實際問題:如果一杯糖水不夠甜,可以選擇加糖的方式,使得糖水變得更甜.若,則下列數(shù)學模型中最能刻畫“糖水變得更甜”的是()A. B.C. D.4.中,,則()A.5 B.6 C. D.85.為了調查老師對微課堂的了解程度,某市擬采用分層抽樣的方法從,,三所中學抽取60名教師進行調查,已知,,三所學校中分別有180,270,90名教師,則從學校中應抽取的人數(shù)為()A.10 B.12 C.18 D.246.已知數(shù)列的通項公式是,則等于()A.70 B.28 C.20 D.87.關于的方程在內有相異兩實根,則實數(shù)的取值范圍為()A. B. C. D.8.為了研究某大型超市開業(yè)天數(shù)與銷售額的情況,隨機抽取了5天,其開業(yè)天數(shù)與每天的銷售額的情況如表所示:開業(yè)天數(shù)1020304050銷售額/天(萬元)62758189根據(jù)上表提供的數(shù)據(jù),求得關于的線性回歸方程為,由于表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為()A.68 B.68.3 C.71 D.71.39.已知,,則等于()A. B. C. D.10.已知樣本數(shù)據(jù)為3,1,3,2,3,2,則這個樣本的中位數(shù)與眾數(shù)分別為()A.2,3 B.3,3 C.2.5,3 D.2.5,2二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,若a2=b2+bc+c2,則A=________.12.直線的傾斜角的大小是_________.13.在平面直角坐標系中,為原點,,動點滿足,則的最大值是.14.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.15.直線與圓的位置關系是______.16.若正實數(shù)滿足,則的最大值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面積的最大值.18.已知關于直線對稱,且圓心在軸上.(1)求的標準方程;(2)已知動點在直線上,過點引的兩條切線、,切點分別為.①記四邊形的面積為,求的最小值;②證明直線恒過定點.19.如圖,當甲船位于處時獲悉,在其正東方向相距20海里的處有一艘漁船遇險等待營救.甲船立即前往救援,同時把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問乙船應朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)20.若直線與軸,軸的交點分別為,圓以線段為直徑.(Ⅰ)求圓的標準方程;(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.21.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用奇函數(shù)的定義,結合反三角函數(shù),即可得出結論.【詳解】又,時,,故選:C.【點睛】本題考查奇函數(shù)的定義、反三角函數(shù),考查學生的計算能力,屬于中檔題.2、C【解析】

根據(jù)高中抽取的人數(shù)和高中總人數(shù)計算可得抽樣比;利用小學和初中總人數(shù)乘以抽樣比即可得到結果.【詳解】由題意可得,抽樣比為:則小學和初中共抽?。喝吮绢}正確選項:【點睛】本題考查分層抽樣中樣本數(shù)量的求解,關鍵是能夠明確分層抽樣原則,準確求解出抽樣比,屬于基礎題.3、B【解析】

由題意可得糖水甜可用濃度體現(xiàn),設糖的量為,糖水的量設為,添加糖的量為,對照選項,即可得到結論.【詳解】由題意,若,設糖的量為,糖水的量設為,添加糖的量為,選項A,C不能說明糖水變得更甜,糖水甜可用濃度體現(xiàn),而,能體現(xiàn)糖水變甜;選項D等價于,不成立,故選:B.【點睛】本題主要考查了不等式在實際生活中的運用,考查不等式的等價變形,著重考查了推理與運算能力,屬于基礎題.4、D【解析】

根據(jù)余弦定理,可求邊長.【詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【點睛】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎題型.5、A【解析】

按照分層抽樣原則,每部分抽取的概率相等,按比例分配給每部分,即可求解.【詳解】,,三所學校教師總和為540,從中抽取60人,則從學校中應抽取的人數(shù)為人.故選:A.【點睛】本題考查分層抽樣抽取方法,按比例分配是解題的關鍵,屬于基礎題.6、C【解析】

因為,所以,所以=20.故選C.7、C【解析】

將問題轉化為與有兩個不同的交點;根據(jù)可得,對照的圖象可構造出不等式求得結果.【詳解】方程有兩個相異實根等價于與有兩個不同的交點當時,由圖象可知:,解得:本題正確選項:【點睛】本題考查正弦型函數(shù)的圖象應用,主要是根據(jù)方程根的個數(shù)確定參數(shù)范圍,關鍵是能夠將問題轉化為交點個數(shù)問題,利用數(shù)形結合來進行求解.8、A【解析】

根據(jù)表中數(shù)據(jù)計算,再代入線性回歸方程求得,進而根據(jù)平均數(shù)的定義求出所求的數(shù)據(jù).【詳解】根據(jù)表中數(shù)據(jù),可得,代入線性回歸方程中,求得,則表中模糊不清的數(shù)據(jù)是,故選:B.【點睛】本題考查了線性回歸方程過樣本中心點的應用問題,是基礎題.9、D【解析】

通過化簡可得,再根據(jù),可得,利用同角三角函數(shù)可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.10、C【解析】

將樣本數(shù)據(jù)從小到大排列即可求得中位數(shù),再找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù).【詳解】將樣本數(shù)據(jù)從小到大排列:1,2,2,3,3,3,中位數(shù)為,眾數(shù)為3.故選:C.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A為△ABC的內角,∴A=120°故答案為:120°12、【解析】試題分析:由題意,即,∴.考點:直線的傾斜角.13、【解析】

試題分析:設,表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點:1.圓的標準方程;2.向量模的運算14、0.9【解析】

先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.15、相交【解析】

由直線系方程可得直線過定點,進而可得點在圓內部,即可得到位置關系.【詳解】化直線方程為,令,解得,所以直線過定點,又圓的圓心坐標為,半徑,而,所以點在圓內部,故直線與圓的位置關系是相交.故答案為:相交.【點睛】本題考查直線與圓位置關系的判斷,考查直線系方程的應用,屬于基礎題.16、【解析】

可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當且僅當時等號成立,故的最大值為.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)B=(Ⅱ)【解析】

(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB①在三角形ABC中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC②由①和②得sinBsinC=cosBsinC而C∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2)S△ABCacsinBac,由已知及余弦定理得:4=a2+c2﹣2accos2ac﹣2ac,整理得:ac,當且僅當a=c時,等號成立,則△ABC面積的最大值為(2)1.18、(1)(2)①②證明見解析【解析】

(1)根據(jù)圓的一般式,可得圓心坐標,將圓心坐標代入直線方程,結合圓心在軸上,即可求得圓C的標準方程.(2)①根據(jù)切線性質及切線長定理,表示出的長,根據(jù)圓的性質可知當最小時,即可求得面積的最小值;②設出M點坐標,根據(jù)兩條切線可知M、A、C、B四點共圓,可得圓心坐標及半徑,進而求得的方程,根據(jù)兩個圓公共弦所在直線方程求法即可得直線方程,進而求得過的定點坐標.【詳解】(1)由題意知,圓心在直線上,即,又因為圓心在軸上,所以,由以上兩式得:,,所以.故的標準方程為.(2)①如圖,的圓心為,半徑,因為、是的兩條切線,所以,,故又因為,根據(jù)平面幾何知識,要使最小,只要最小即可.易知,當點坐標為時,.此時.②設點的坐標為,因為,所以、、、四點共圓.其圓心為線段的中點,,設所在的圓為,所以的方程為:,化簡得:,因為是和的公共弦,所以,兩式相減得,故方程為:,當時,,所以直線恒過定點.【點睛】本題考查了圓的一般方程與標準方程的應用,圓中三角形面積問題的應用,直線過定點問題,綜合性強,屬于難題.19、乙船應朝北偏東約的方向沿直線前往處救援.【解析】

根據(jù)題意,求得,利用余弦定理求得的長,在中利用正弦定理求得,根據(jù)題目所給參考數(shù)據(jù)求得乙船行駛方向.【詳解】解:由已知,則,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,則,故乙船應朝北偏東約的方向沿直線前往處救援.【點睛】本小題主要考查解三角形在實際生活中的應用,考查正弦定理、余弦定理解三角形,屬于基礎題.20、(Ⅰ);(Ⅱ)或.【解析】

(1)本題首先根據(jù)直線方程確定、兩點坐標,然后根據(jù)線段為直徑確定圓心與半徑,即可得出圓的標準方程;(2)首先可根據(jù)題意得出圓心到直線的距離為,然后根據(jù)直線的斜率是否存在分別設出直線方程,最后根據(jù)圓心到直線距離公式即可得出結果?!驹斀狻?1)令方程中的,得,令,得.所以點的坐標分別為.所以圓的圓心是,半徑是,所以圓的標準方程為.(2)因為,圓的半徑為,所以圓心到直線的距離為.若直線的斜率不存在,直線的方程為,符合題意.若直線的斜率存在,設其直線方程為,即.圓的圓心到直線的距離,解得.則直線的方程為,即.綜上,直線的方程為或.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論