




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
營銷研究方法
----
數(shù)量分析方法周影輝博士zyhmaths@163.com中山大學(xué)管理學(xué)院市場學(xué)系1營銷研究方法
----問題引入例6.在表2-7給出了一些女性曾生子女?dāng)?shù)的數(shù)據(jù),同時也給出了她們的年齡,受教育程度和居住地。如果我們想知道女性的年齡(AGE),文化程度(EDU,5個級別)及居住地(AREA,城市和農(nóng)村)對其曾生子女?dāng)?shù)的影響,怎樣建模?關(guān)鍵是文化程度和居住地2問題引入例6.2表2-7
CEBAGEEDUAREA1 20 311 22 4 22 24 3 21 25 5 11 28 5 1……3表2-7CEBAGE社會科學(xué)研究中,有許多分類變量,如民族,文化程度,性別,公司類型,品牌等它們也可以被包含在線性回歸模型中,用以解釋因變量的變化在將它們引入回歸模型之前,必須先將它們轉(zhuǎn)化為虛擬變量(啞變量)。為什么?4社會科學(xué)研究中,有許多分類變量,如民族,文化程度,性別,公司因為分類變量的各類根本沒有定量關(guān)系,不能像間距變量的情形那樣,分析變化一個單位時,的平均變化如男(0)-----女(1)但我們可以以類為單位,分析各類對的影響5因為分類變量的各類根本沒有定量關(guān)系,不能像間距變量的情形那樣虛擬變量的建立設(shè)是有個分類的分類變量,在數(shù)據(jù)處理時以不同編碼值代表案例所屬的類型用個取值為0和1的虛擬(dummy)變量分別代表各個類的屬性當(dāng)案例屬于一個虛擬變量所代表的類時,這個虛擬變量就取1,否則取0分類變量:
有問題嗎?6虛擬變量的建立設(shè)是有個分類的分類變量,在數(shù)據(jù)處理時以不同這個虛擬變量線性相關(guān),違背了最小二乘回歸的條件。怎樣解決?取消一個虛擬變量,即對有個分類的變量用個虛擬變量編碼。有沒有信息損失,為什么?稱不設(shè)虛擬變量明確表示的類為參照類7這個虛擬變量線性相關(guān),違背了最小二乘回歸的條件。怎樣例6.(續(xù))文化程度(EDU)有5類,分別為(1)文盲或半文盲(2)小學(xué)(3)初中(4)高中(5)大學(xué)5類需4個虛擬變量,取(1)為參照類,則虛擬變量取值規(guī)則如下
8例6.(續(xù))8地區(qū)(AREA)有兩類,分別為(1)城市和(2)農(nóng)村,只用一個虛擬變量DU就可以了。取農(nóng)村為參照類,編碼規(guī)則為
根據(jù)原變量值建立虛擬變量的工作可以用SPSS數(shù)據(jù)轉(zhuǎn)換功能來完成SPSSShow!9地區(qū)(AREA)有兩類,分別為(1)城市和(2)農(nóng)村用表2-7的數(shù)據(jù)建立如下回歸方程
回歸結(jié)果如下
方程的為0.96,各變量的回歸系數(shù)均在0.05水平顯著10用表2-7的數(shù)據(jù)建立如下回歸方程10虛擬變量回歸系數(shù)的意義當(dāng)兩個分類變量都屬于參照類時,所有虛擬變量都取值0,回歸方程(41)可以簡化為上式為參照類女性的曾生子女?dāng)?shù)對年齡的回歸直線,為直線的截距,為直線的斜率(表示?)11虛擬變量回歸系數(shù)的意義當(dāng)兩個分類變量都屬于參照類時,所有虛擬當(dāng)受教育程度為小學(xué),居住地為農(nóng)村時,方程為(44)是(43)的平行線,但截距增加了,因此是小學(xué)文化程度女性比文盲半文盲女性在相同的年齡和居住地條件下曾生子女?dāng)?shù)多的部分12當(dāng)受教育程度為小學(xué),居住地為農(nóng)村時,方程為12表示各類別的虛擬變量的回歸系數(shù)表示該類別與參照類均值之差,因此它又稱為差別截距回歸方程(42)各系數(shù)的解釋?13表示各類別的虛擬變量的回歸系數(shù)表示該類別與參照類如何衡量各個變量(組)作用的大???
用偏確定系數(shù)。分別做不含有(作為一組,代表EDU),AGE和DU的線性回歸,然后根據(jù)(23)式,可得表2-814如何衡量各個變量(組)作用的大???14表2-815表2-815如果只關(guān)心AGE和AREA對CEB的影響,我們可以做CEB對AGE和AREA的回歸為什么不建立兩個線性回歸模型,分別對城鄉(xiāng)女性擬合她們曾生子女?dāng)?shù)與其年齡的回歸直線?分別估計和用虛擬變量回歸將他們合并一起估計有何差別?16如果只關(guān)心AGE和AREA對CEB的影響,我們可多元回歸比簡單回歸的優(yōu)越性:只有將各方面的變量放在同一模型中,才能在控制其他自變量的情況下對各自自變量的邊際作用進(jìn)行考察和檢驗統(tǒng)計控制17多元回歸比簡單回歸的優(yōu)越性:只有將各方面的變量放在同一模型中與單因素方差分析的關(guān)系如果一個回歸分析中只有虛擬變量,并且這些虛擬變量都代表某一個原變量的不同類別,那么這一回歸的整體檢驗等價于單因素方差分析(one-wayanalysisofvariance,1-wayANOVA)如只納入代表EDU的四個虛擬變量的回歸
回歸方程的顯著性檢驗F=10.079SPSSShow!方差分析v.s.回歸分析18與單因素方差分析的關(guān)系如果一個回歸分析中只有虛擬變量,并且這在只有一方面的虛擬變量的回歸方程中,由于沒有其他變量,各回歸系數(shù)的表現(xiàn)十分單純,回歸常數(shù)項就是參照類案例的
平均值本例中即為兩個文盲、半文盲案例的CEB值4和5的平均值其他教育水平類的平均值則通過參照類平均值加上相應(yīng)差值來表現(xiàn),如大學(xué)……這一方程完美再現(xiàn)了樣本按教育程度分類的類平均值19在只有一方面的虛擬變量的回歸方程中,由于沒有其他變量,各回歸與雙因素方差分析的關(guān)系如果一個回歸分析中只有兩個因素形成的虛擬變量,那么這一回歸分析等價于雙因素方差分析(2-wayANOVA)如例6中將代表教育程度和城鄉(xiāng)的所有虛擬變量納入回歸中嚴(yán)格來說,它是只考慮了主效應(yīng)的雙因素方差分析,它沒有考慮教育程度和城鄉(xiāng)兩個因素之間的交互作用(Interaction)如何在回歸中納入交互作用呢?20與雙因素方差分析的關(guān)系如果一個回歸分析中只有兩個因素形成的虛交互作用用兩個因素的各項虛擬變量相乘得到如例6中,EDU與AREA的交互作用為SPSSShow---Howtogettheseinteractionterms?方差分析v.s.回歸分析?21交互作用用兩個因素的各項虛擬變量相乘得到21含交互作用的回歸方程為將交互作用包含在內(nèi)的飽和雙因素方差模型,能夠完美再現(xiàn)各交互分類的組平均值常數(shù)項仍然是參照類的平均值,這時的參照類是交互參照類,即兩個因素的所有虛擬變量都取0時的類本例中的交互參照類為農(nóng)村文盲半文盲女性,樣本中這一類只有一例,其平均值直接為這一例的CEB值22含交互作用的回歸方程為22其他交互類的平均值也可以由上述回歸方程計算出來對于城市小學(xué)水平的女性,有
其他所有代表主效應(yīng)和交互效應(yīng)的虛擬變量的值都為0,算得該交互類的平均值為
23其他交互類的平均值也可以由上述回歸方程計算出來23在交互效應(yīng)比較小,或者出于簡化模型的目的,在模型中不考慮交互項例6的雙因素分析的簡化模型為常數(shù)項仍為參照類的CEB平均值的估計,由于沒有考慮交互項的影響,估計出現(xiàn)了誤差(4.73v.s.5),但同樣可以通過其他各系數(shù)計算任一交互類的估計值城市小學(xué)水平
出現(xiàn)了偏差24在交互效應(yīng)比較小,或者出于簡化模型的目的,在模型中不考慮交互由于沒有考慮交互作用,各交互類的估計就會出現(xiàn)估計誤差,這是簡化的代價但是回歸分析對所有案例估計誤差之和等于0。為什么?25由于沒有考慮交互作用,各交互類的估計就會出現(xiàn)估計誤差,這是簡考慮了所有交互作用的模型稱為飽和模型當(dāng)有K個因素時,飽和模型中不僅有二階交互項,而且還有三階,四階直至K階所有因素組合的各階交互項。當(dāng)因素很多時,一般不再采用虛擬變量回歸,而是直接用SPSS中的方差分析來做26考慮了所有交互作用的模型稱為飽和模型26協(xié)方差分析如果一個回歸分析中不僅有虛擬變量,而且還有其他間距測度變量,那么這一回歸等價于協(xié)方差分析(AnalysisofCovariance,ANCOVA)。間距測度變量在協(xié)方差分析中稱為協(xié)變量(Covariate)例6中,AGE是間距測度變量,
和
是虛擬變量27協(xié)方差分析如果一個回歸分析中不僅有虛擬變量,而且還有其他間距模型(41)中沒有考慮因素之間的交互效應(yīng)由于控制了(引入了)協(xié)變量AGE,使得所有類別平均值中都不含有年齡的影響,常數(shù)項成了抽象的無年齡的“農(nóng)村文盲、半文盲女性”的平均生育數(shù)(為什么)CEB被分解為AGE,EDU和AREA三個獨立因素的影響(認(rèn)為交互效應(yīng)為0)28模型(41)中沒有考慮因素之間的交互效應(yīng)28多元回歸中的控制,就是通過統(tǒng)計方法將所有案例中這三個方面的影響剝離開,而常數(shù)項是剝離以后參照組的平均生育水平控制年齡后,參照組的平均生育水平降低了很多?,F(xiàn)實中不存在沒有年齡的女性,所以在估計一個女性的生育水平時,必須給定一個年齡。年齡的邊際貢獻(xiàn)和實際貢獻(xiàn)在這個例子中都很大29多元回歸中的控制,就是通過統(tǒng)計方法將所有案例中這三個方面的影在這個例子中,年齡只是一個控制變量,不是分析的焦點。通常我們關(guān)注的是社會科學(xué)中的抽象變量(生育,教育,城鄉(xiāng))之間的關(guān)系和差異選擇不同的參照類對結(jié)果是否有影響?
那些結(jié)果受影響,那些不受影響?30在這個例子中,年齡只是一個控制變量,不是分析的焦點。通常我們含虛擬變量的回歸分析的檢驗在回歸分析中采用虛擬變量,無論是對整個模型的顯著性檢驗(F檢驗),還是對回歸系數(shù)的顯著性檢驗(t檢驗),與一般回歸分析完全一樣對于虛擬變量,由于取值只能是0和1,所以檢驗的只是該變量取值為1的類別的平均值是否與參照類的平均值有顯著差別31含虛擬變量的回歸分析的檢驗在回歸分析中采用虛擬變量,無論是對在其他條件相同的情況下,如何對同一因素的不同類進(jìn)行比較?如小學(xué)和大學(xué)其他條件相同的情況下,同一因素不同類的平均值之差為。相應(yīng)的假設(shè)檢驗為檢驗統(tǒng)計量為(服從)
32在其他條件相同的情況下,如何對同一因素的不同類進(jìn)行比較?如小小結(jié)在因素數(shù)目較少,各因素的類別較少且可以忽略交互效應(yīng)時,較適宜用回歸方法進(jìn)行方差分析回歸方法同時解決了方差分析,計算各類平均值與參照類平均值之差,并對其顯著性進(jìn)行了檢驗但在因素數(shù)目較多,類別較多,而且不能忽略交互效應(yīng)時,直接用SPSS的方差分析模塊比較方便,它不需建立虛擬變量,還可以按照用戶要求規(guī)定各階交互項33小結(jié)在因素數(shù)目較少,各因素的類別較少且可以忽略交互效應(yīng)時,較其他分類變量編碼方法用于事后比較(即根據(jù)抽樣調(diào)查的觀測數(shù)據(jù)來進(jìn)行分析)的編碼:虛擬編碼和效應(yīng)編碼用于事先設(shè)計好的比較方案(即觀測數(shù)據(jù)是通過可控制的試驗研究取得的)的編碼:正交編碼和非正交編碼34其他分類變量編碼方法用于事后比較(即根據(jù)抽樣調(diào)查的觀測數(shù)據(jù)來效應(yīng)編碼反映各類與總平均值之間的差距一個分類變量如果包括k類,則需要k-1個效應(yīng)變量。習(xí)慣選第一類或最后一類不設(shè)立單獨變量,他們可通過其他效應(yīng)變量表示35效應(yīng)編碼反映各類與總平均值之間的差距35用分別表示文盲半文盲,小學(xué),初中和高中,不對“大學(xué)”單獨設(shè)立效應(yīng)變量,對教育水平的效應(yīng)編碼如下36用效應(yīng)編碼賦值規(guī)則如下:對于k-1個效應(yīng)變量,當(dāng)案例屬于該效應(yīng)變量代表的類別時,效應(yīng)變量賦值1;當(dāng)案例不屬于該效應(yīng)變量代表的類別時,效應(yīng)變量賦值0當(dāng)案例屬于不設(shè)立效應(yīng)變量的一類時,所有效應(yīng)變量賦值為-137效應(yīng)編碼賦值規(guī)則如下:37對于“大學(xué)”為不設(shè)立效應(yīng)變量的類,CEB對教育因素效應(yīng)變量的回歸方程為回歸方程的顯著性檢驗F=10.079,與采用虛擬編碼的回歸方程一致系數(shù)的解釋?各類平均值與采用虛擬編碼的結(jié)果是否一致?38對于“大學(xué)”為不設(shè)立效應(yīng)變量的類,CEB對教育因素效應(yīng)變量的無論用虛擬編碼還是效應(yīng)編碼,無論選哪個類為參照類或不設(shè)立獨立效應(yīng)變量,對應(yīng)模型的和回歸模型的F檢驗是完全相同的只不過各個系數(shù)的解釋不一樣數(shù)學(xué)推導(dǎo)說明虛擬編碼和效應(yīng)編碼的意義39無論用虛擬編碼還是效應(yīng)編碼,無論選哪個類為參照類或不設(shè)立獨立作業(yè)2對于例6中提供的背景和表2-7中給出的數(shù)據(jù),采用效應(yīng)變量完成簡化的(無交互效應(yīng))和飽和的(含交互效應(yīng))的雙因素方差分析模型分析,并解釋的意義
注:取“EDU=5”和“AREA=2”分別為不設(shè)立效應(yīng)變量的類,用分別表示文盲半文盲,小學(xué),初中和高中
的效應(yīng)40作業(yè)2對于例6中提供的背景和表2-7中給出的數(shù)據(jù),采2.在第1題的基礎(chǔ)上,完成雙因素和加上間距測度變量AGE的協(xié)方差分析(不考慮因素的交互效應(yīng))3.在第1和第2題的基礎(chǔ)上,從擬合優(yōu)度,回歸模型的顯著性檢驗,類平均值(只考慮小學(xué)文化程度的城市女性)的角度與采用虛擬變量的回歸模型的結(jié)果進(jìn)行比較
412.在第1題的基礎(chǔ)上,完成雙因素和加上間距測度變量營銷研究方法
----
數(shù)量分析方法周影輝博士zyhmaths@163.com中山大學(xué)管理學(xué)院市場學(xué)系42營銷研究方法
----問題引入例6.在表2-7給出了一些女性曾生子女?dāng)?shù)的數(shù)據(jù),同時也給出了她們的年齡,受教育程度和居住地。如果我們想知道女性的年齡(AGE),文化程度(EDU,5個級別)及居住地(AREA,城市和農(nóng)村)對其曾生子女?dāng)?shù)的影響,怎樣建模?關(guān)鍵是文化程度和居住地43問題引入例6.2表2-7
CEBAGEEDUAREA1 20 311 22 4 22 24 3 21 25 5 11 28 5 1……44表2-7CEBAGE社會科學(xué)研究中,有許多分類變量,如民族,文化程度,性別,公司類型,品牌等它們也可以被包含在線性回歸模型中,用以解釋因變量的變化在將它們引入回歸模型之前,必須先將它們轉(zhuǎn)化為虛擬變量(啞變量)。為什么?45社會科學(xué)研究中,有許多分類變量,如民族,文化程度,性別,公司因為分類變量的各類根本沒有定量關(guān)系,不能像間距變量的情形那樣,分析變化一個單位時,的平均變化如男(0)-----女(1)但我們可以以類為單位,分析各類對的影響46因為分類變量的各類根本沒有定量關(guān)系,不能像間距變量的情形那樣虛擬變量的建立設(shè)是有個分類的分類變量,在數(shù)據(jù)處理時以不同編碼值代表案例所屬的類型用個取值為0和1的虛擬(dummy)變量分別代表各個類的屬性當(dāng)案例屬于一個虛擬變量所代表的類時,這個虛擬變量就?。保駝t取0分類變量:
有問題嗎?47虛擬變量的建立設(shè)是有個分類的分類變量,在數(shù)據(jù)處理時以不同這個虛擬變量線性相關(guān),違背了最小二乘回歸的條件。怎樣解決?取消一個虛擬變量,即對有個分類的變量用個虛擬變量編碼。有沒有信息損失,為什么?稱不設(shè)虛擬變量明確表示的類為參照類48這個虛擬變量線性相關(guān),違背了最小二乘回歸的條件。怎樣例6.(續(xù))文化程度(EDU)有5類,分別為(1)文盲或半文盲(2)小學(xué)(3)初中(4)高中(5)大學(xué)5類需4個虛擬變量,取(1)為參照類,則虛擬變量取值規(guī)則如下
49例6.(續(xù))8地區(qū)(AREA)有兩類,分別為(1)城市和(2)農(nóng)村,只用一個虛擬變量DU就可以了。取農(nóng)村為參照類,編碼規(guī)則為
根據(jù)原變量值建立虛擬變量的工作可以用SPSS數(shù)據(jù)轉(zhuǎn)換功能來完成SPSSShow!50地區(qū)(AREA)有兩類,分別為(1)城市和(2)農(nóng)村用表2-7的數(shù)據(jù)建立如下回歸方程
回歸結(jié)果如下
方程的為0.96,各變量的回歸系數(shù)均在0.05水平顯著51用表2-7的數(shù)據(jù)建立如下回歸方程10虛擬變量回歸系數(shù)的意義當(dāng)兩個分類變量都屬于參照類時,所有虛擬變量都取值0,回歸方程(41)可以簡化為上式為參照類女性的曾生子女?dāng)?shù)對年齡的回歸直線,為直線的截距,為直線的斜率(表示?)52虛擬變量回歸系數(shù)的意義當(dāng)兩個分類變量都屬于參照類時,所有虛擬當(dāng)受教育程度為小學(xué),居住地為農(nóng)村時,方程為(44)是(43)的平行線,但截距增加了,因此是小學(xué)文化程度女性比文盲半文盲女性在相同的年齡和居住地條件下曾生子女?dāng)?shù)多的部分53當(dāng)受教育程度為小學(xué),居住地為農(nóng)村時,方程為12表示各類別的虛擬變量的回歸系數(shù)表示該類別與參照類均值之差,因此它又稱為差別截距回歸方程(42)各系數(shù)的解釋?54表示各類別的虛擬變量的回歸系數(shù)表示該類別與參照類如何衡量各個變量(組)作用的大???
用偏確定系數(shù)。分別做不含有(作為一組,代表EDU),AGE和DU的線性回歸,然后根據(jù)(23)式,可得表2-855如何衡量各個變量(組)作用的大小?14表2-856表2-815如果只關(guān)心AGE和AREA對CEB的影響,我們可以做CEB對AGE和AREA的回歸為什么不建立兩個線性回歸模型,分別對城鄉(xiāng)女性擬合她們曾生子女?dāng)?shù)與其年齡的回歸直線?分別估計和用虛擬變量回歸將他們合并一起估計有何差別?57如果只關(guān)心AGE和AREA對CEB的影響,我們可多元回歸比簡單回歸的優(yōu)越性:只有將各方面的變量放在同一模型中,才能在控制其他自變量的情況下對各自自變量的邊際作用進(jìn)行考察和檢驗統(tǒng)計控制58多元回歸比簡單回歸的優(yōu)越性:只有將各方面的變量放在同一模型中與單因素方差分析的關(guān)系如果一個回歸分析中只有虛擬變量,并且這些虛擬變量都代表某一個原變量的不同類別,那么這一回歸的整體檢驗等價于單因素方差分析(one-wayanalysisofvariance,1-wayANOVA)如只納入代表EDU的四個虛擬變量的回歸
回歸方程的顯著性檢驗F=10.079SPSSShow!方差分析v.s.回歸分析59與單因素方差分析的關(guān)系如果一個回歸分析中只有虛擬變量,并且這在只有一方面的虛擬變量的回歸方程中,由于沒有其他變量,各回歸系數(shù)的表現(xiàn)十分單純,回歸常數(shù)項就是參照類案例的
平均值本例中即為兩個文盲、半文盲案例的CEB值4和5的平均值其他教育水平類的平均值則通過參照類平均值加上相應(yīng)差值來表現(xiàn),如大學(xué)……這一方程完美再現(xiàn)了樣本按教育程度分類的類平均值60在只有一方面的虛擬變量的回歸方程中,由于沒有其他變量,各回歸與雙因素方差分析的關(guān)系如果一個回歸分析中只有兩個因素形成的虛擬變量,那么這一回歸分析等價于雙因素方差分析(2-wayANOVA)如例6中將代表教育程度和城鄉(xiāng)的所有虛擬變量納入回歸中嚴(yán)格來說,它是只考慮了主效應(yīng)的雙因素方差分析,它沒有考慮教育程度和城鄉(xiāng)兩個因素之間的交互作用(Interaction)如何在回歸中納入交互作用呢?61與雙因素方差分析的關(guān)系如果一個回歸分析中只有兩個因素形成的虛交互作用用兩個因素的各項虛擬變量相乘得到如例6中,EDU與AREA的交互作用為SPSSShow---Howtogettheseinteractionterms?方差分析v.s.回歸分析?62交互作用用兩個因素的各項虛擬變量相乘得到21含交互作用的回歸方程為將交互作用包含在內(nèi)的飽和雙因素方差模型,能夠完美再現(xiàn)各交互分類的組平均值常數(shù)項仍然是參照類的平均值,這時的參照類是交互參照類,即兩個因素的所有虛擬變量都取0時的類本例中的交互參照類為農(nóng)村文盲半文盲女性,樣本中這一類只有一例,其平均值直接為這一例的CEB值63含交互作用的回歸方程為22其他交互類的平均值也可以由上述回歸方程計算出來對于城市小學(xué)水平的女性,有
其他所有代表主效應(yīng)和交互效應(yīng)的虛擬變量的值都為0,算得該交互類的平均值為
64其他交互類的平均值也可以由上述回歸方程計算出來23在交互效應(yīng)比較小,或者出于簡化模型的目的,在模型中不考慮交互項例6的雙因素分析的簡化模型為常數(shù)項仍為參照類的CEB平均值的估計,由于沒有考慮交互項的影響,估計出現(xiàn)了誤差(4.73v.s.5),但同樣可以通過其他各系數(shù)計算任一交互類的估計值城市小學(xué)水平
出現(xiàn)了偏差65在交互效應(yīng)比較小,或者出于簡化模型的目的,在模型中不考慮交互由于沒有考慮交互作用,各交互類的估計就會出現(xiàn)估計誤差,這是簡化的代價但是回歸分析對所有案例估計誤差之和等于0。為什么?66由于沒有考慮交互作用,各交互類的估計就會出現(xiàn)估計誤差,這是簡考慮了所有交互作用的模型稱為飽和模型當(dāng)有K個因素時,飽和模型中不僅有二階交互項,而且還有三階,四階直至K階所有因素組合的各階交互項。當(dāng)因素很多時,一般不再采用虛擬變量回歸,而是直接用SPSS中的方差分析來做67考慮了所有交互作用的模型稱為飽和模型26協(xié)方差分析如果一個回歸分析中不僅有虛擬變量,而且還有其他間距測度變量,那么這一回歸等價于協(xié)方差分析(AnalysisofCovariance,ANCOVA)。間距測度變量在協(xié)方差分析中稱為協(xié)變量(Covariate)例6中,AGE是間距測度變量,
和
是虛擬變量68協(xié)方差分析如果一個回歸分析中不僅有虛擬變量,而且還有其他間距模型(41)中沒有考慮因素之間的交互效應(yīng)由于控制了(引入了)協(xié)變量AGE,使得所有類別平均值中都不含有年齡的影響,常數(shù)項成了抽象的無年齡的“農(nóng)村文盲、半文盲女性”的平均生育數(shù)(為什么)CEB被分解為AGE,EDU和AREA三個獨立因素的影響(認(rèn)為交互效應(yīng)為0)69模型(41)中沒有考慮因素之間的交互效應(yīng)28多元回歸中的控制,就是通過統(tǒng)計方法將所有案例中這三個方面的影響剝離開,而常數(shù)項是剝離以后參照組的平均生育水平控制年齡后,參照組的平均生育水平降低了很多。現(xiàn)實中不存在沒有年齡的女性,所以在估計一個女性的生育水平時,必須給定一個年齡。年齡的邊際貢獻(xiàn)和實際貢獻(xiàn)在這個例子中都很大70多元回歸中的控制,就是通過統(tǒng)計方法將所有案例中這三個方面的影在這個例子中,年齡只是一個控制變量,不是分析的焦點。通常我們關(guān)注的是社會科學(xué)中的抽象變量(生育,教育,城鄉(xiāng))之間的關(guān)系和差異選擇不同的參照類對結(jié)果是否有影響?
那些結(jié)果受影響,那些不受影響?71在這個例子中,年齡只是一個控制變量,不是分析的焦點。通常我們含虛擬變量的回歸分析的檢驗在回歸分析中采用虛擬變量,無論是對整個模型的顯著性檢驗(F檢驗),還是對回歸系數(shù)的顯著性檢驗(t檢驗),與一般回歸分析完全一樣對于虛擬變量,由于取值只能是0和1,所以檢驗的只是該變量取值為1的類別的平均值是否與參照類的平均值有顯著差別72含虛擬變量的回歸分析的檢驗在回歸分析中采用虛擬變量,無論是對在其他條件相同的情況下,如何對同一因素的不同類進(jìn)行比較?如小學(xué)和大學(xué)其他條件相同的情況下,同一因素不同類的平均值之差為。相應(yīng)的假設(shè)檢驗為檢驗統(tǒng)計量為(服從)
73在其他條件相同的情況下,如何對同一因素的不同類進(jìn)行比較?如小小結(jié)在因素數(shù)目較少,各因素的類別較少且可以忽略交互效應(yīng)時,較適宜用回歸方法進(jìn)行方差分析回歸方法同時解決了方差分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校茶水間管理制度
- 學(xué)校飲水水管理制度
- 學(xué)生洗澡室管理制度
- 寧波港門衛(wèi)管理制度
- 安全生產(chǎn)周管理制度
- 安裝加工件管理制度
- 實訓(xùn)室教師管理制度
- 寵物店公司管理制度
- 客房消毒間管理制度
- 室外弱電井管理制度
- 國家開放大學(xué)2025年《創(chuàng)業(yè)基礎(chǔ)》形考任務(wù)3答案
- 江岸區(qū)2023-2024學(xué)年下學(xué)期期末七年級數(shù)學(xué)試卷(含答案)
- 來料質(zhì)量異常反饋單
- n系列蒸汽型溴化鋰吸收式冷水機(jī)組f.ju.1
- 會展策劃與管理高水平專業(yè)群建設(shè)項目建設(shè)方案
- 2021-2022學(xué)年江蘇省揚州市高一下學(xué)期期末地理試題
- 最新四川省教師資格認(rèn)定體檢表
- 串并聯(lián)電路電壓表電流表(課堂PPT)
- XXX縣第三次國土調(diào)查技術(shù)報告
- 肝硬化基本知識ppt課件
評論
0/150
提交評論