




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.2.在中,在邊上滿足,為的中點,則().A. B. C. D.3.如圖,在中,,且,則()A.1 B. C. D.4.已知數(shù)列中,,且當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.5.兩圓和相外切,且,則的最大值為()A. B.9 C. D.16.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.7.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-58.展開項中的常數(shù)項為A.1 B.11 C.-19 D.519.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.10.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.11.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.12.若復(fù)數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為______.14.已知數(shù)列的前項和為,且成等差數(shù)列,,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為______________.15.內(nèi)角,,的對邊分別為,,,若,則__________.16.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.18.(12分)隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學(xué)員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進(jìn)入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計,得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學(xué)期望.19.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產(chǎn)品需要費用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.20.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.22.(10分)已知函數(shù).(1)當(dāng)時,判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當(dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.2、B【解析】
由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.3、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.4、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當(dāng)為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.5、A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.6、C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.7、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.8、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.9、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.10、D【解析】
根據(jù),利用通項公式得到含的項為:,進(jìn)而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎(chǔ)題,11、B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.12、C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復(fù)數(shù)的除法運算,復(fù)數(shù)的概念運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.14、1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質(zhì)可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達(dá)式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進(jìn)行計算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時,.當(dāng)時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學(xué)運算能力.15、【解析】∵,∴,即,∴,∴.16、【解析】
建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運算即可得到答案.【詳解】以A為坐標(biāo)原點,AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時,關(guān)鍵是點的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.18、(1);(2)見解析.【解析】
事件表示男學(xué)員在第次考科目二通過,事件表示女學(xué)員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應(yīng)的概率,進(jìn)而可求X的數(shù)學(xué)期望.【詳解】事件表示男學(xué)員在第次考科目二通過,事件表示女學(xué)員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎(chǔ)題.19、(1);(2)見解析.【解析】
(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機變量的可能取值有、、,計算出隨機變量在不同取值下的概率,由此可得出隨機變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查了隨機變量分布列,考查計算能力,屬于基礎(chǔ)題.20、(1)證明見解析;(2).【解析】
(1)取BC的中點O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個法向量為,則,令,則,又平面的一個法向量為,所以二面角的余弦值為,即二面角的余弦值為.【點睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.21、(1),;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標(biāo)方程變形為,進(jìn)而可得出曲線的直角坐標(biāo)方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標(biāo)方程變形為,所以,曲線的直角坐標(biāo)方程為;/r/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)資產(chǎn)品購銷合同模板
- 行政管理的制度環(huán)境
- 腫瘤患者心理護(hù)理
- 雙胎護(hù)理常規(guī)
- 2025屆廣東省深圳實驗學(xué)校高中園與惠東高級中學(xué)高三下學(xué)期5月適應(yīng)性聯(lián)考(三模)物理試卷
- 故事:小貓釣魚
- 微生物菌種保藏
- 2025年管理會計試題
- 瞳孔護(hù)理教學(xué)規(guī)范與操作要點
- 固鎮(zhèn)發(fā)展新質(zhì)生產(chǎn)力
- 牛場安全培訓(xùn)
- 腦電圖及臨床應(yīng)用
- 新《城鎮(zhèn)燃?xì)庠O(shè)施運行、維護(hù)和搶修安全技術(shù)規(guī)程》考試題庫(含答案)
- 第八單元常見的酸、堿、鹽基礎(chǔ)練習(xí)題-+2024-2025學(xué)年九年級化學(xué)科粵版(2024)下冊
- 2025年廣西物流職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫帶答案
- 萬科物業(yè)綠化養(yǎng)護(hù)管理手冊
- 第十二周《遇見勞動之美點亮成長底色》主題班會
- 世界環(huán)境日環(huán)保教育班會 課件
- 臨床診療指南-疼痛學(xué)分冊
- 2024認(rèn)定實際施工人法律風(fēng)險防范與合同完善服務(wù)合同3篇
評論
0/150
提交評論