2022年浙江省金華市重點中學高三第三次模擬考試數(shù)學試卷含解析_第1頁
2022年浙江省金華市重點中學高三第三次模擬考試數(shù)學試卷含解析_第2頁
2022年浙江省金華市重點中學高三第三次模擬考試數(shù)學試卷含解析_第3頁
2022年浙江省金華市重點中學高三第三次模擬考試數(shù)學試卷含解析_第4頁
2022年浙江省金華市重點中學高三第三次模擬考試數(shù)學試卷含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設命題p:>1,n2>2n,則p為()A. B.C. D.2.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立3.已知定義在上的函數(shù),,,,則,,的大小關系為()A. B. C. D.4.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.5.設全集U=R,集合,則()A. B. C. D.6.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.7.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.18.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.9.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.10.若不等式在區(qū)間內的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.12.函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.平面向量與的夾角為,,,則__________.14.如圖是一個算法偽代碼,則輸出的的值為_______________.15.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)16.點P是△ABC所在平面內一點且在△ABC內任取一點,則此點取自△PBC內的概率是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.18.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.19.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設bn=an?3n,求數(shù)列{bn}的前n項和Tn.20.(12分)求下列函數(shù)的導數(shù):(1)(2)21.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82822.(10分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】根據(jù)命題的否定,可以寫出:,所以選C.2.A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.3.D【解析】

先判斷函數(shù)在時的單調性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調性是解題的關鍵.4.C【解析】

設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.5.A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎題.6.C【解析】

先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.7.A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.8.B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.9.A【解析】

求出函數(shù)在處的導數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎題.10.C【解析】

由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調性,根據(jù)在區(qū)間內的解集中有且僅有三個整數(shù),轉化為在區(qū)間內的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.11.D【解析】

根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,12.A【解析】依題意有的周期為.而,故應左移.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結果,屬于基礎題型.14.5【解析】

執(zhí)行循環(huán)結構流程圖,即得結果.【詳解】執(zhí)行循環(huán)結構流程圖得,結束循環(huán),輸出.【點睛】本題考查循環(huán)結構流程圖,考查基本分析與運算能力,屬基礎題.15.①②④【解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.16.【解析】

設是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.y=2sin2x.【解析】

計算MN,計算得到函數(shù)表達式.【詳解】∵M,N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數(shù)解析式為y=2sin2x.【點睛】本題考查了矩陣變換,意在考查學生的計算能力.18.(1)l:,C方程為;(2)=【解析】

(1)直接利用轉換關系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.

(2)利用一元二次方程根和系數(shù)關系式的應用求出結果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應的參數(shù)),所以,,所以=.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數(shù)關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.19.(1).(2)【解析】

(1)先設等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學運算能力.屬于中檔題.20.(1);(2).【解析】

(1)根據(jù)復合函數(shù)的求導法則可得結果.(2)同樣根據(jù)復合函數(shù)的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數(shù)的導數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復合,再根據(jù)復合函數(shù)的求導法則可得所求的導數(shù),本題屬于容易題.21.(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】

(1)計算得到,由此可得結論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據(jù)數(shù)學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據(jù)分層抽樣方法得:男生有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論