




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
普通高中課程標(biāo)準(zhǔn)實驗教科書
數(shù)學(xué)《必修5》第一章數(shù)列我們畢業(yè)啦其實是答辯的標(biāo)題地方§1.2
等差數(shù)列的前n項和普通高中課程標(biāo)準(zhǔn)實驗教科書我們畢業(yè)啦§1.2等差數(shù)列的前學(xué)習(xí)任務(wù):學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)1.理解等差數(shù)列前n項和的推導(dǎo)方法2.掌握等差數(shù)列的前n項和公式3.能利用等差數(shù)列的前n項和公式解決實際問題課后作業(yè)學(xué)習(xí)任務(wù):學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)1等差數(shù)列要點整理1.定義:2.通項公式:3.通項公式的變形:4.性質(zhì):
學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)等差數(shù)列要點整理1.定義:2.通項公式:3.通項公式的變形:
學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)你知道這個雄偉壯觀的建筑是哪兒嗎?
世界七大奇跡之一——印度泰姬陵
北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)你學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?即:1+2+3+······+100=?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題即:1+2+3+······+100=?高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)即:1+2+3+······+100=?高斯Gauss.問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?
高斯的思路有什么特點?適合哪種類型?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101即:1+2+3+······+100=?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾特點:首尾配對(變不同數(shù)求和為相同數(shù)求和,變加法為乘法)類型:偶數(shù)個數(shù)相加學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)即:1+2+3+······+100=?高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)特點:首尾配對(變不同數(shù)求和為相同數(shù)求和,變加法為乘法)學(xué)習(xí)
這是求奇數(shù)個項的和的問題,能不能直接用高斯的辦法呢求和呢?如何改進(jìn)?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題2:圖案中,第1層到第21層一共有多少顆寶石?
北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)這是求奇數(shù)個項的和的問題,能不能直接用高斯的辦法呢求和呢S21=1+2+3+…+212S21=(1+21)+(2+20)+(3+19)+…+(21+1)S21=21+20+19+…+1問題2:圖案中,第1層到第21層一共有多少顆寶石?
獲得算法:學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)S21=1+2+3+…+212S21=(問題2:圖案中,第1層到第21層一共有多少顆寶石?
這種方法有什么特點?我們給它起個什么名字呢?倒序相加法學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)獲得算法:S21=1+2+3+…+212S21=(1+21)+(2+20)+(3+19)+…+(21+1)S21=21+20+19+…+1北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)問題2:圖案中,第1層到第21層一共有多少顆寶石?這種方法有上式相加得:由等差數(shù)列性質(zhì)可知:問題3:對于一般等差數(shù)列{an},如何推導(dǎo)它的前n項和公式Sn呢?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)上式相加得:由等差數(shù)列性質(zhì)可知:問題3:對于一般等差數(shù)等差數(shù)列前n項和公式(公式一)(公式二)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)等差數(shù)列前n項和公式(公式一)(公式二)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)例1:分別根據(jù)下列條件,求等差數(shù)列{an}的前n項和Sn①1+3+5+…+(2n-1)=
;②2+4+6+…+2n=
.口答:n2n(n+1)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)例1:分別根據(jù)下列條件,求等差數(shù)列{an}的前n項和Sn①例2:等差數(shù)列-10,-6,-2,2,…前多少項和是54?解:設(shè)題中的等差數(shù)列是{an},前n項和為Sn.則a1=-10,d=-6-(-10)=4,Sn=54.由等差數(shù)列前n項和公式,得解得n1=9,n2=-3(舍去).因此,等差數(shù)列的前9項和是54.1.an=?an=4n-14Sn=2n2-12n2.Sn呢?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)例2:等差數(shù)列-10,-6,-2,2,…前多少項和是54?解例3.根據(jù)下列各題的條件,求相應(yīng)等差數(shù)列的未知數(shù)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)例3.根據(jù)下列各題的條件,求相應(yīng)等差數(shù)列的未知數(shù)學(xué)習(xí)任務(wù)復(fù)習(xí)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)反饋檢測歸納總結(jié)課后作業(yè)132014北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)反饋檢測歸納總結(jié)課后作業(yè)13學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)1.倒序相加法求和的思想及應(yīng)用2.等差數(shù)列前n項和公式的推導(dǎo)過程3.公式4.前n項和公式的靈活應(yīng)用及方程的思想北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)1.學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)思考題:
我國數(shù)列求和的概念起源很早,到南北朝時,張丘建始創(chuàng)等差數(shù)列求和解法.他在《張丘建算經(jīng)》中給出等差數(shù)列求和問題:今有女子不善織布,每天所織的布以同數(shù)遞減,初日織五尺,末一日織一尺,共織三十日,問共織幾何?
北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)思考普通高中課程標(biāo)準(zhǔn)實驗教科書
數(shù)學(xué)《必修5》第一章數(shù)列我們畢業(yè)啦其實是答辯的標(biāo)題地方§1.2
等差數(shù)列的前n項和普通高中課程標(biāo)準(zhǔn)實驗教科書我們畢業(yè)啦§1.2等差數(shù)列的前學(xué)習(xí)任務(wù):學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)1.理解等差數(shù)列前n項和的推導(dǎo)方法2.掌握等差數(shù)列的前n項和公式3.能利用等差數(shù)列的前n項和公式解決實際問題課后作業(yè)學(xué)習(xí)任務(wù):學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)1等差數(shù)列要點整理1.定義:2.通項公式:3.通項公式的變形:4.性質(zhì):
學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)等差數(shù)列要點整理1.定義:2.通項公式:3.通項公式的變形:
學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)你知道這個雄偉壯觀的建筑是哪兒嗎?
世界七大奇跡之一——印度泰姬陵
北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)你學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?即:1+2+3+······+100=?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題即:1+2+3+······+100=?高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)即:1+2+3+······+100=?高斯Gauss.問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?
高斯的思路有什么特點?適合哪種類型?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101即:1+2+3+······+100=?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾特點:首尾配對(變不同數(shù)求和為相同數(shù)求和,變加法為乘法)類型:偶數(shù)個數(shù)相加學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)即:1+2+3+······+100=?高斯
Gauss.C.F
(1777~1855)德國著名數(shù)學(xué)家1+2+3+…+98+99+10010150×(1+100)=50501+100=2+99=3+98=???=50+51=101問題1:傳說泰姬陵中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡程度可見一斑.你知道這個圖案一共用了多少顆圓寶石嗎?北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)特點:首尾配對(變不同數(shù)求和為相同數(shù)求和,變加法為乘法)學(xué)習(xí)
這是求奇數(shù)個項的和的問題,能不能直接用高斯的辦法呢求和呢?如何改進(jìn)?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)問題2:圖案中,第1層到第21層一共有多少顆寶石?
北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)這是求奇數(shù)個項的和的問題,能不能直接用高斯的辦法呢求和呢S21=1+2+3+…+212S21=(1+21)+(2+20)+(3+19)+…+(21+1)S21=21+20+19+…+1問題2:圖案中,第1層到第21層一共有多少顆寶石?
獲得算法:學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)S21=1+2+3+…+212S21=(問題2:圖案中,第1層到第21層一共有多少顆寶石?
這種方法有什么特點?我們給它起個什么名字呢?倒序相加法學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)獲得算法:S21=1+2+3+…+212S21=(1+21)+(2+20)+(3+19)+…+(21+1)S21=21+20+19+…+1北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)問題2:圖案中,第1層到第21層一共有多少顆寶石?這種方法有上式相加得:由等差數(shù)列性質(zhì)可知:問題3:對于一般等差數(shù)列{an},如何推導(dǎo)它的前n項和公式Sn呢?學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)上式相加得:由等差數(shù)列性質(zhì)可知:問題3:對于一般等差數(shù)等差數(shù)列前n項和公式(公式一)(公式二)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)等差數(shù)列前n項和公式(公式一)(公式二)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)例1:分別根據(jù)下列條件,求等差數(shù)列{an}的前n項和Sn①1+3+5+…+(2n-1)=
;②2+4+6+…+2n=
.口答:n2n(n+1)學(xué)習(xí)任務(wù)復(fù)習(xí)鞏固創(chuàng)設(shè)情境探索發(fā)現(xiàn)學(xué)以致用歸納總結(jié)課后作業(yè)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)北師大版高中數(shù)學(xué)必修五2.2等差數(shù)列的前n項和課件(共19張PPT)例1:分別根據(jù)下列條件,求等差數(shù)列{an}的前n項和Sn①例2:等差數(shù)列-10,-6,-2,2,…前多少項和是54?解:設(shè)題中的等差數(shù)列是{an},前n項和為Sn.則a1=-10,d=-6-(-10)=4,Sn=54.由等差數(shù)列前n項和公式,得解得n1=9,n2=-3(舍去).因此,等差數(shù)列的前9項和是54.1.an=?an=4n-14Sn=2n2-12n2.Sn呢?學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綿陽綠卡服務(wù)管理辦法
- 宜昌物業(yè)收費管理辦法
- 托管機(jī)構(gòu)配送管理辦法
- 育兒健康教育課件
- 肥鄉(xiāng)實驗中學(xué)消防課件
- 套管培訓(xùn)大綱課件
- 腸癌化療護(hù)理
- 網(wǎng)球培訓(xùn)教程課件圖片
- 對口高考最難數(shù)學(xué)試卷
- 高中1到9章的數(shù)學(xué)試卷
- 打擊非法行醫(yī)非法采供血和規(guī)范醫(yī)療機(jī)構(gòu)執(zhí)業(yè)行為
- 水處理反滲透設(shè)備日常維護(hù)保養(yǎng)點檢記錄表
- 檔案整理及數(shù)字化服務(wù)方案
- 《講師技能培訓(xùn)》課件
- 設(shè)備日常點檢表
- 土力學(xué)與地基基礎(chǔ)(課件)
- 青島版二年級數(shù)學(xué)下冊(六三制)全冊課件【完整版】
- (完整版)初中生物實驗報告單
- 公司變更登記(備案)申請書
- 2023年醫(yī)技類-超聲醫(yī)學(xué)(副高)考試歷年真題集錦附答案
- 復(fù)合不定代詞
評論
0/150
提交評論