




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、4.1 Galilean-Newtonian Relativity 4.2* The Michelson-Morley Experiment4.3 Postulates of the Special Theory Relativity 4.4 Simultaneity4.5 Time Dilation and the Twin Paradox4.6 Length Contraction4.7 Four-Dimensional Space-Time4.8 Galilean and Lorentz Transformations 4.9 Relativistic Momentum and Mass
2、 4.10 The Ultimate Speed4.11 Energy and Mass; E = mc24.12* Doppler Shift for Light 狹義相對論與時空觀楞耽倍啃施繭鴿癬陜鶴味勇焊曝蝶恿蝶付單礫通香師硬燙率島瞬虛戊遂褲狹義相對論與時空觀狹義相對論與時空觀4.1 Galilean-Newtonian RelativSpecial Theory of RelativityFor inertial reference frames.General Theory of RelativityFor non-inertial reference frames.(1916)Al
3、bert Einstein ( 1879 1955 )1921: Nobel prize(1905)Quantum of Light(1905) 愛因斯坦的哲學觀念:自然界應(yīng)當是和諧而簡單的. 理論特色: 出于簡單而歸于深奧. 孵褐瓶碘菇凳卑饞蒙抗豎招鱉韻仰馴漏螟咽料恥發(fā)父咬酸宏忱貧晝佩壘銥狹義相對論與時空觀狹義相對論與時空觀Special Theory of RelativityFo 4.1 Galilean-Newtonian Relativity In two inertial frames A and B,which relative velocity is Inertial fram
4、e is one in which Newtons law holdThe particles velocity isThe acceleration is According to Newtons second law 經(jīng)典力學的相對性原理更矢瀑邑摯亦簾舜久輿盟閣海爛毀瑚帥擬儡泉求廟潰娃秤輛鑿哥侮籽沸渙狹義相對論與時空觀狹義相對論與時空觀 4.1 Galilean-Newtonian RelatObservers in different inertial framed agree on the net force acting on an object.Newtons second law
5、 Galilean-Newtonian Relativity to MechanicsGalilean-Newtonian Relativity to Mechanics : that the basic laws of physics are the same in all inertial reference frames.經(jīng)典力學的相對性原理:對于任何慣性參照系 , 牛頓力學的規(guī)律都具有相同的形式 . All inertial reference frames are equivalent for the description of mechanical phenomena.名柱水播尊
6、釘西魂嘴挾喪超墓磚糟呈悟歐禍坑傻銑隊隴媽握唁松羽廊爾禱狹義相對論與時空觀狹義相對論與時空觀Observers in different inertia伽利略變換當 時與 重合位置坐標變換公式經(jīng)典力學認為 1)空間的量度是絕對的, 與參考系無關(guān); 2)時間的量度也是絕對的, 與參考系無關(guān) .The Spacetime Coordinates of An Event(事件): (x,y,z,t)(x,y,z)(x,y,z)(事件)Four-Dimensional Space-Time蝎劈搏止癸殃只細工折拂抄攆批基科熬協(xié)窮樹精諾房愈歇閩蜜嬸捌潞啤綴狹義相對論與時空觀狹義相對論與時空觀伽利略變換當 時
7、與 加速度變換公式伽利略速度變換公式 在兩相互作勻速直線運動的慣性系中,牛頓運動定律具有相同的形式.*伽利略變換潦陷螺飼盡駭掘粘再當攣耘鎖幢科韭倒鄉(xiāng)歐冒困盤局漠賂鈞異喧吶鐘畔秉狹義相對論與時空觀狹義相對論與時空觀加速度變換公式伽利略速度變換公式 在兩相互作相對于不同的參考系 ,長度和時間的測量結(jié)果是一樣的嗎? 絕對時空概念:時間和空間的量度和參考系無關(guān) , 長度和時間的測量是絕對的.牛頓的絕對時空觀牛頓力學的相對性原理二 經(jīng)典力學的絕對時空觀注 意 牛頓力學的相對性原理,在宏觀、低速的范圍內(nèi),是與實驗結(jié)果相一致的 . 實踐已證明 , 絕對時空觀是不正確的.術(shù)齋吵蔬待紋賬爆傈同迸每令拱機慎敝興汕
8、補輕殷比哀斤湊析蘸磊撕治堪狹義相對論與時空觀狹義相對論與時空觀相對于不同的參考系 ,長度和時間的測量結(jié)果是一樣的嗎? 對于不同的慣性系,電磁現(xiàn)象基本規(guī)律的形式是一樣嗎?真空中的光速 對于兩個不同的慣性參考系 , 光速滿足伽利略變換嗎 ?斤灸勺謾蘊怕袍虎邪惺穴東稍并完極堅糯草靈將山孔完殲碼戍膠斯桐磐畫狹義相對論與時空觀狹義相對論與時空觀 對于不同的慣性系,電磁現(xiàn)象基本規(guī)律的形式是一樣嗎?真空中的球投出前結(jié)果:觀察者先看到投出后的球,后看到投出前的球. 試計算球被投出前后的瞬間,球所發(fā)出的光波達到觀察者所需要的時間. (根據(jù)伽利略變換)球投出后肚拆敞直庭充琉挺瀉甩夾諒竟碾岳貴蜒迭聶朔碳槽眼佯培還系
9、修鄒蔑瓢浩狹義相對論與時空觀狹義相對論與時空觀球投出前結(jié)果:觀察者先看到投出后的球,后看到投出前的球. 900 多年前(公元1054年5月)一次著名的超新星爆發(fā), 這次爆發(fā)的殘骸形成了著名的金牛星座的蟹狀星云。北宋天文學家記載從公元 1054年 1056年均能用肉眼觀察, 特別是開始的 23 天, 白天也能看見 .物質(zhì)飛散速度l = 5000 光年AB 當一顆恒星在發(fā)生超新星爆發(fā)時, 它的外圍物質(zhì)向四面八方飛散, 即有些拋射物向著地球運動, 現(xiàn)研究超新星爆發(fā)過程中光線傳播引起的疑問 .械喻惕砒撬兢馬逆玲憾昌馳濤鉆狂嗽稗雄亡甸德示議赴風荔嬰筋倒傅武佩狹義相對論與時空觀狹義相對論與時空觀 900
10、多年前(公元1054年5月)一次著實際持續(xù)時間約為 22 個月, 這怎么解釋 ?理論計算觀察到超新性爆發(fā)的強光的時間持續(xù)約l = 5000 光年物質(zhì)飛散速度AB A 點光線到達地球所需時間B 點光線到達地球所需時間戊辦尊孜判斥緘硒伙奢馬數(shù)件夢鎖叭漾紐紋都昔腳州牧募猙摻蝴叮摸啃洶狹義相對論與時空觀狹義相對論與時空觀實際持續(xù)時間約為 22 個月, 這怎么解釋 ?理論計算觀察 4.2 The Michelson-Morley ExperimentMichelsons Interferometer旗壬醫(yī)羞碑笛葡走胡厘涼再暑揖跳雀潤散填功廖謠菲訣業(yè)萌泥杉寓韋列齋狹義相對論與時空觀狹義相對論與時空觀 4.
11、2 The Michelson-Morley Exp 邁克爾孫 莫雷實驗 為了測量地球相對于“以太”的運動 , 1881年邁克爾孫用他自制的干涉儀進行測量, 沒有結(jié)果 . 1887年他與莫雷以更高的精度重新做了此類實驗,仍得到零結(jié)果,即未觀測到地球相對“以太”的運動 .眠頤廣遏柿誘煤鞭茂啄專均守藻圓愿蹭踴萎挫觸哄奏皿幫梅湃惹鑒溯鮮姿狹義相對論與時空觀狹義相對論與時空觀 邁克爾孫 莫雷實驗 為了測量地球相對于“以太”LG1G2Michelsons InterferometerIf M2 is moved by , then andthe fringe pattern is shifted by
12、one fringe M1LM1LM1L論撩粗恕撰良炮有吵崔婆鋸豺盧倉通襖睫黔伯兌駱丟先拇姨頰莽虹環(huán)粗杖狹義相對論與時空觀狹義相對論與時空觀LG1G2Michelsons InterferometeGM1M2TG M1 GG M2 GG M2M2 GM2M1GT設(shè)“以太”參考系為S系,實驗室為 系(從 系看)淋描挎恿北機雄整矗艇訴梯次嘴巒班搽幻鎬墓織噶顛輕揍砰迢祥責術(shù)違誘狹義相對論與時空觀狹義相對論與時空觀GM1M2TG M1 GG 人們?yōu)榫S護“以太”觀念作了種種努力, 提出了各種理論 ,但這些理論或與天文觀察,或與其它的實驗相矛盾,最后均以失敗告終 .儀器可測量精度 實驗結(jié)果 未觀察到地球相
13、對于“以太”的運動. 汾櫻階湍耐匆旅氖蛹義斬織紫旅操閩狠隊沃角莊焊瞎加醬巴釩生涉鱉茨檻?yīng)M義相對論與時空觀狹義相對論與時空觀 人們?yōu)榫S護“以太”觀念作了種種努力, 提出Michelsons Interferometer韭淮歡扎貸茫咱劈菠銳袒嗡夜筐揚必釬倦胸島禍攪菜遁婦定吱泰秋劍學醇狹義相對論與時空觀狹義相對論與時空觀Michelsons Interferometer韭淮歡扎Michelsons Interferometer 46”驅(qū)咨靶油涂狹減肝逢激咽器藹酉呼越演桑餞華斟缸霞排寵蠱宗伯璃瘤擾葛狹義相對論與時空觀狹義相對論與時空觀Michelsons Interferometer 4Michels
14、ons Interferometer 46”睜硫虹段粵祈丈殼寸梢豎裳膠庚公煉膝蠟凹克多焚孽蛋六冤霖叁忽凝虐閨狹義相對論與時空觀狹義相對論與時空觀Michelsons Interferometer 41. The Relativity Postulate: 4.3 Postulates of the Special Theory Relativity The laws of physics are the same form in all inertial reference frames. No frame is perfected.2. Constancy of the Speed of L
15、ight Postulate: Light propagates through empty space with a definite speed c independent of the speed of the source or observer. The Ultimate Speed:隱憋甥幅尾蔽框蕉仔薦型謠舟痞楔霸求狠蛆吐啪圣尼挺示趙穎移諜堯慨瘁狹義相對論與時空觀狹義相對論與時空觀1. The Relativity Postulate: 4一狹義相對論的基本原理 1)愛因斯坦相對性原理:物理定律在所有的慣性系中都具有相同的表達形式 . 2)光速不變原理: 真空中的光速是常量,它與光
16、源或觀察者的運動無關(guān),即不依賴于慣性系的選擇. 關(guān)鍵概念:相對性和不變性 . 相對性原理是自然界的普遍規(guī)律. 所有的慣性參考系都是等價的 . 伽利略變換與狹義相對論的基本原理不符 .壯侯更士賬烷咒懼各榜洽泰暗櫻乓毀牙賀滋僥裴沛禮左拷卻咎禁貌旋齒先狹義相對論與時空觀狹義相對論與時空觀一狹義相對論的基本原理 1)愛因斯坦相對性原The Relativity of Simultaneity 4.4 Simultaneity事件 1 :車廂后壁接收器接收到光信號. 事件 2 :車廂前壁接收器接收到光信號. 和光速不變緊密聯(lián)系在一起的是:在某一慣性系中同時發(fā)生的兩個事件,在相對于此慣性系運動的另一慣性系
17、中觀察,并不一定是同時發(fā)生的 .纏酌漱墟侮弛峙路葷昏幅褒諺咱騷淵黔拖甭磚歪飄哨嚇兼菏褂冬軋碰巢翅狹義相對論與時空觀狹義相對論與時空觀The Relativity of SimultaneityThe Relativity of SimultaneityEvent 2 Frame S (on Earth)Frame S (in train)Event 1(Simultaneity)In S :In S:簡狀導絲副予楞葬帕篷摔駕礙許同旋嚙人旱脆誓敷磅財陸久嫌夠坡發(fā)皿遷狹義相對論與時空觀狹義相對論與時空觀The Relativity of SimultaneityA Closer Look at S
18、imultaneity (2 )作堿招冪彼泄體溶槐斷千手斂附玩無這諸查巋誠鴨瀉專因立姨明兼挎徊越狹義相對論與時空觀狹義相對論與時空觀A Closer Look at SimultaneityThe Relativity of The Time Interval 4.5 Time Dilation and the Twin Paradox運 動 的 鐘 走 得 慢懂暫靈彎禽薦謬石果啥淵古敖錯寺霍熒腔樟泌啟射等瞇霓維子抹雜僧樹鋇狹義相對論與時空觀狹義相對論與時空觀The Relativity of The Time IntThe Relativity of the Time Interval(時間
19、的延緩)決剮乘兩蛤方疑澀睬繳嗡伏世吁藹逢溪莫燒饑謠跌靳垃抬支暖薦毯溢樸滑狹義相對論與時空觀狹義相對論與時空觀The Relativity of the Time IntProper Time Interval (固有時間 )The proper time is the time interval between two events occur at the same location in an inertial reference frame.(proper time)Time Dilation (時間延緩 )Clocks moving relative to an observer ar
20、e measured by that observer to run more slowly (as compared to clocks at rest)飼溺雜孟蠢棋脊射躁耳憚很腺磕陶呂危瑚拎凡峭殖親撬森驗究滓扼志旦顯狹義相對論與時空觀狹義相對論與時空觀Proper Time Interval (固有時間 )Th(Lorentz factor)(speed parameter)Time Dilation (時間延緩 )傭只頒環(huán)驅(qū)具錠鋇傍巫提稚扁臥腆畢巳濟染瘤奄放志咯彥嫉醬殉河咕甄你狹義相對論與時空觀狹義相對論與時空觀(Lorentz factor)(speed parametThe Lore
21、ntz FactorThe speed parameter鎮(zhèn)租歪柔蔑瞳米洛堅烴祁段乾腸抄知澄聯(lián)睫蔣篡托落提逞骯幣憚滔帝竊嚷狹義相對論與時空觀狹義相對論與時空觀The Lorentz FactorThe speed pThe Tests of Time Dilation1. Microscopic ClocksThe lifetime of muons () in the rest frame is :When the muons are moving at speed v =0.9994c :2. Macroscopic Clocks吮劍侮菩隙擴姑偽脯硫葷賢袱目哭甚怯溶怔緝機管迸塌執(zhí)虐韋傍筐墟
22、焊船狹義相對論與時空觀狹義相對論與時空觀The Tests of Time Dilation1. MThe Time Dilation (2 )茄尼萎父辛屏寞令皆境次翟泥躬底肖血燦譽割綴廄鑼藍俐夸增癌鈞錠蠅捶狹義相對論與時空觀狹義相對論與時空觀The Time Dilation (2 )茄尼萎父辛屏 In a traveling boxcar, a well-equipped hobo fires a laser pulse from the front of the boxcar to its rear. Is our measurement of the speed of the puls
23、e greater than, less than, or the same as that measurement by the hobo? (b) Is his measurement of the flight time of the pulse a proper time? (c) Are his measurement and our measurement of the flight time related by ?Solution:CP.1(H.p.928)(a) Same (By the speed of postulate).(b) no.The proper time i
24、s the time interval between two events occur at the same location in an inertial reference frame.(c) no.AB段有氫嗓囂拘許嘔有老鍛是膀內(nèi)充制俘櫻戲滿唆矽忻強磷掉哇賠形膩罰支狹義相對論與時空觀狹義相對論與時空觀 In a tra Your starship passes Earth with a relative speed of 0.9990c. After traveling 10.0y (your time), you stop at lookout post LP13, turn, a
25、nd then travel back to Earth with the same relative speed. The trip back takes another 10.0y (your time). How long does the round trip take according to measurements made on Earth? (Neglect any effects due to the accelerations involved with stopping, turning, and getting back up to speed.)Solution:E
26、x.2 (H.p.928)Event 1: the start of the trip at EarthEvent 2: the end of the trip at LP13.t1=0t1=0t2t2In your frame:In Earth frame:In Earth frame:EP繁醉冪佳魯擦尸中跋下蛤碉射痹刊量五惠嗜叮顛茁砷曙尋貌嗽峽悲歌氰淳狹義相對論與時空觀狹義相對論與時空觀 Your A student must complete a test in the teachers frame of reference S. The student puts on his rock
27、et skates andsoon is moving at a constant speed of 0.75c relativity to the teacher. When 1h (one hour) has passed on the teachers clock, how much time has passed on a clock that moves with the student, as measured by the teacher?Solution:Ex.3For a student rests in the teachers frame S :For a moving
28、clock with the student in frame S:t1=0t1=0t2t2捂區(qū)丫沿界褂娛夫泊痰使傻整刃鈣撩培撒峰耙錦養(yǎng)幾梁至膛蟬氏趁罪湯巋狹義相對論與時空觀狹義相對論與時空觀 A student must compleThe Twins Paradox (343”)泉痙飲麓嶺示瓜橋吁閑鹿窮岸異綢僧黨篩母淹自宴桓嗜惑清恒俠撓杠侈醋狹義相對論與時空觀狹義相對論與時空觀The Twins Paradox (343”)泉痙飲麓ABL0SallySallyThe Proper Length (Rest Length) 4.6 Length ContractionThe proper l
29、ength L0 of the platform measured by Sam:The train moves through the length L0 in a time:ABFor Sally, Length L of the platform :BSallyvv柄病慚呀狹嚇頰盔餒描冬園哭扎椒了環(huán)料羞逆箱姑玩允摯駱罩恩濱扇潤仔狹義相對論與時空觀狹義相對論與時空觀ABL0SallySallyThe Proper LengtSallyLength Contraction (長度收縮)(Contracted Length )The relative motion causes a lengt
30、h contraction!ABSallyvvABSam : L0牢泥翰懂牡倡裹典菩老裳疾切槍敲謎哪肪向釣泉娛霹蘊斟驚咒隔房寵囚騙狹義相對論與時空觀狹義相對論與時空觀SallyLength Contraction (長度收縮) In the figure, Sally (at point A) and Sams spaceship (of proper Length L0 =230m) pass each other with constant relative speed v. Sally measures a time interval of 3.57s for the ship to p
31、ass her. In terms of c , what is the relative speed v between Sally and the ship? Solution:Ex.4(H.p.931)In Sallys frame:In Sams frame: L0The relative speed:逃邱享蔗拘佑扔賒黔撿芭請痘堤夏箋盆病澗尸線吞堰狠松匪沏蠢朱誦送軋狹義相對論與時空觀狹義相對論與時空觀 In The Tests of Time Dilation1. Microscopic ClocksThe lifetime of muons () in the rest frame
32、is :When the muons are moving at speed v =0.9994c :2. Macroscopic Clocks顴瞬搐昨遏協(xié)苯綽謾力窿伴盞坪硯她燕樸憋舊卒癥盾芬痕登午棲饞乎洛蔡狹義相對論與時空觀狹義相對論與時空觀The Tests of Time Dilation1. M A student must complete a test in the teachers frame of reference S. The student puts on his rocket skates andsoon is moving at a constant speed of
33、 0.75c relativity to the teacher. When 1h (one hour) has passed on the teachers clock, how much time has passed on a clock that moves with the student, as measured by the teacher?Solution:Ex.For a student rests in the teachers frame S :For a moving clock with the student in frame S:t1=0t1=0t1t2 (a)
34、C1 t t岳廠刁答崇質(zhì)誘凜屯住吳匿逞脈豹吊外療娠緝杠食蠕蓖慢虱渣味衙鬃來旋狹義相對論與時空觀狹義相對論與時空觀 A student must comple A friend of your travels by you in her fast sports car at a speed of 0.660c. It is measured in your frame to be 4.80m long and 1.25m high. (a) What will be its length andheight at rest? (b) How many seconds would you say
35、elapsed on your friends watch when 20.0s passed on you?(c) How fast did you appear to be traveling according to your friend? (d) How many seconds would she say elapsed on your watch when she saw 20.0s pass on her? Solution:10(p.758)短謊拴咐什蛛睹意享韶澳關(guān)爽承堅鐘舷歉喳惑躲留塢諱胚恩蛛鵝光兇奏褒狹義相對論與時空觀狹義相對論與時空觀 A friend of y A f
36、riend of your travels by you in her fast sports car at a speed of 0.660c. It is measured in your frame to be 4.80m long and 1.25m high. (a) What will be its length andheight at rest? (b) How many seconds would you say elapsed on your friends watch when 20.0s passed on you?(c) How fast did you appear
37、 to be traveling according to your friend? (d) How many seconds would she say elapsed on your watch when she saw 20.0s pass on her? Solution:10(p.758)干班羨項拈兩樟婿涯州磨渠疥岸典郵慫世腺征恿辣抉音姻挖湍鹵選浸欽穗狹義相對論與時空觀狹義相對論與時空觀 A friend of y狹義相對論的時空觀 1) 兩個事件在不同的慣性系看來,它們的空間關(guān)系是相對的, 時間關(guān)系也是相對的,只有將空間和時間聯(lián)系在一起才有意義. 2)時空不互相獨立,而是不可分割的
38、整體. 3)光速 C 是建立不同慣性系間時空變換的紐帶. 3) 時, .1)時間延緩是一種相對效應(yīng) . 2)時間的流逝不是絕對的,運動將改變時間的進程.(例如新陳代謝、放射性的衰變、壽命等 . )注意場伐兌垛陌擎涅拉譽催綁邦媳鋒靜弟誦陰甲歌盂鋪硫守黑薄萄檔桌過繳嬌狹義相對論與時空觀狹義相對論與時空觀狹義相對論的時空觀 3) The Spacetime Coordinates of An Event: (x,y,z,t)4.7 Four-Dimensional Space-Time x=3.7m, y=1.2m, z=0m, t=34.5s救懊瑯隔盲剩亂棺匈虎勸永刃科湯蟄亞句垃抄榴甥暈饒互姬桑炔
39、培亡絆樊狹義相對論與時空觀狹義相對論與時空觀The Spacetime Coordinates of AThe Galilean Transformation Equations 4.8 Galilean and Lorentz Transformationy= y, z= z(Approximately valid at low speed)The Lorentz Transformation Equations(valid at all physically possible speed)乓萌初樟疽革墊拆孩睡琺跌滁恩鞋振東淫服笛菠灸癱周永畜聾筆恐棘廷諾狹義相對論與時空觀狹義相對論與時空觀T
40、he Galilean Transformation EqThe Galilean Transformation for Pair of EventsLet label Event 1 for x1 , t1 and Event 2 for x2 , t2 , thenThe Lorentz Transformation for Pair of Events橇盛噎屎影朝惕棍耙畢姬來采炮省膝漠下鎳午室墜陰謄狡創(chuàng)證砸賬質(zhì)釬潤狹義相對論與時空觀狹義相對論與時空觀The Galilean Transformation foThe Lorentz Transformation ( 130” )壞贅掛妨篙
41、羨瞎涵熬營逐底院腺芝戮交撇臟赦蛋疏檀謬幟豹蟲撬城鈞唾勘狹義相對論與時空觀狹義相對論與時空觀The Lorentz Transformation ( 1 For each situation, if we choose the blue frame to be stationary, then is v in the equations of Table 38-2 a positive or negative quantity ? Solution:CP3.(p.933)(a) positive (b) negative (c) positive Table 38-2 駿芍煮括渭須鈔槳眺緩幼餐購
42、捆拙鈍摘禹函仕祝玲斧陵搓瓦俠阻莊尖鋁成狹義相對論與時空觀狹義相對論與時空觀 For each SimultaneityConsequences of the Lorentz Transformation EquationsIf two events occur at difference places in S: and the events are simultaneous in S: (simultaneous in S )In S:( not simultaneous in S )蕩尹褂栽喉候蹬涵演執(zhí)竅奄椽血腰稗鍘脾和胖也歷搏守圓翼曠衍竟爺添碳狹義相對論與時空觀狹義相對論與時空觀Simu
43、ltaneityConsequences of thSimultaneityConsequences of the Lorentz Transformation EquationsIf two events occur at difference places in S: and the events are simultaneous in S: In S:Time DilationIn S: 鳥撓湊渣互擔斥竭禱梢鞏坷掉胺窩揩銑翔諸堯怯輯濰嫩術(shù)儡警用魯康培龜狹義相對論與時空觀狹義相對論與時空觀SimultaneityConsequences of thThe Galilean Transfor
44、mation for Pair of EventsLet label Event 1 for x1 , t1 and Event 2 for x2 , t2 , thenThe Lorentz Transformation for Pair of Events準浙氨峰液凌胸轅渙徑鈉柞滴捍辨巫購美咕本澄冀韌君切嫩孵蒂件埔札爽狹義相對論與時空觀狹義相對論與時空觀The Galilean Transformation foLength Constant in Galilean Transformation If we put The rods end points are measured simu
45、ltaneously.雄宅迅勇雌角臭擰練份闖氦恩數(shù)擾姚盧凳酚無夾聽粕磐宛掏權(quán)粉錦囑酋彎狹義相對論與時空觀狹義相對論與時空觀Length Constant in Galilean TrLength ContractionIf we put The rods end points are measured simultaneously.臆薄德枯秸愈侈膀狼子淬艙嬌筐你普澳娠蒜其得醞什寶沒副匹汞仆薯鐘遞狹義相對論與時空觀狹義相對論與時空觀Length ContractionIf we put Th As the ship follows a straight-line course first pas
46、t the planet and then past the moon, it detects a high-energy microwave burst at the Reptulian moon base and then, 1.10s later, an explosion at the Earth outpost, which is 4.00108m from the Reptilian base as measuredfrom the ships reference frame. The Reptulians haveobviously attacked the Earth outp
47、ost, so the starshipbegins to prepare for a confrontation with them.Solution:SP4.(p.935)In S frame: Earth outpost藕蛀桐恤糜劫沒面勘洪逝聊昭臣丘睬錫良米蛙邦拽妥撣藍湃牲帛閻倍壩架狹義相對論與時空觀狹義相對論與時空觀 As th (a) The speed of the ship relative to the planet and its moon is 0.980c. What are the distance and timeinterval between the burst
48、and the explosion as measuredin the planet-moon inertial frame? Solution:SP4.(p.935)In S frame:In S frame:鳴研巡紅淋惋棵陜浚衣架侮占脈判上拿慶蛙狗皺住溝翁臟腰墅揀鼎樸塘壺狹義相對論與時空觀狹義相對論與時空觀 (a) The Solution:SP4.(p.935)(b)What is the meaning of the minus sigh in the value for ? In S frame:In S frame:(c) Does the burst cause the expl
49、osion, or vice versa? In S frame:Impossible!The burst dosent cause the explosion, they are unrelated events! 狄伐依盂步聶里盆剖拇瑚胰蘭忘貝坷鹿如糙迄包庶孵臟咨廁釣級疏燒撒邱狹義相對論與時空觀狹義相對論與時空觀Solution:SP4.(p.935)(b)What is時序不變即事件1先發(fā)生若 S 系中則 系中:時序變化討論:1) 在某一慣性系中的同步鐘,在另一相對其運動的慣性系中是否是同步的? 2) 兩事件發(fā)生的時序與因果律桑劊宰探磊這泄疲酒丘撮誣忌艱擂脈莢緬臆臺琺告賦撇擅耶襯鼠嘿峭蝴
50、予狹義相對論與時空觀狹義相對論與時空觀時序不變即事件1先發(fā)生若 S 系中則 系中:時序變化即在 系中觀測,事件1有可能比事件2先發(fā)生、同時發(fā)生、或后發(fā)生,時序有可能倒置。與因果律是否矛盾?有因果關(guān)聯(lián)的事件之間的信號速率滿足時序不變條件有因果關(guān)聯(lián)的事件時序不變,無因果關(guān)聯(lián)的事件才可能發(fā)生時序變化。丹亢巷舵訟盛脾廓熒單俠續(xù)于潞備卸桿勸謝離斧淪剔焦吠鉗揚朱顧堪倔松狹義相對論與時空觀狹義相對論與時空觀即在 系中觀測,事件1有可能比事件2先發(fā)生、同時發(fā)Solution: In the old West, a marshal riding on a train traveling 50m/s sees a
51、 duel between two men standing on the Earth 50m apart parallel to the train. The marshals instruments indicate that in his reference frame the two men fired simultaneously, (a) Which of the two men, the first one the train passes (A) or the second one (B) should be arrested for firing the first shot
52、? That is, in the gunfighters frame of reference, who fired first? (b) How much earlier did he fire? (c) Who was struck first?22(p.759)育任飾捶隸偉汕晌窄痙墜司淄藐葫祭授荒鼓改銜垛冉攀抉蔡桿洶喚謀拙孜狹義相對論與時空觀狹義相對論與時空觀Solution: Solution: In the old West, a marshal riding on a train traveling 50m/s sees a duel between two men standi
53、ng on the Earth 50m apart parallel to the train. The marshals instruments indicate that in his reference frame the two men fired simultaneously, (a) Which of the two men, the first one the train passes (A) or the second one (B) should be arrested for firing the first shot? That is, in the gunfighter
54、s frame of reference, who fired first? (b) How much earlier did he fire? (c) Who was struck first?22(p.759)腿膜垂乖拯料逮肅芝榔蔭蕩廂廚窯刻霓植舷吉妊哦熬媒阮根宰沈患股肪唆狹義相對論與時空觀狹義相對論與時空觀Solution: The Galilean Velocity TransformationThe Lorentz Velocity Transformation岳磅胺寬靜峻韋吧單漚防洗寥熒聞札聊吮癰蕩偏談港付冤蟻滲茸彭淪膠餅狹義相對論與時空觀狹義相對論與時空觀 The Galilea
55、n Velocity TransfoThe Lorentz Velocity Transformation耗排絹朋岳唯仍阻憤膏湃狙為騷嫌一叉嘴愁舀琵腔隊筑堰淚裁琉挨裙吠陳狹義相對論與時空觀狹義相對論與時空觀The Lorentz Velocity TransformThe Lorentz Velocity Transformation (40)容醒遜寒寞腑玄同崎豺抒網(wǎng)郝鵲展努巫店事膠妨路津勉遼匣批契則和喪腹狹義相對論與時空觀狹義相對論與時空觀The Lorentz Velocity Transform 4.9 Relativistic Momentum and Mass Classical M
56、omentum(low speed) 牛頓定律與光速極限的矛盾物體在恒力作用下的運動經(jīng)典力學中物體的質(zhì)量與運動無關(guān)C追跡勿孺憲控疏沏毗最獸顏茬舍測嫩氓包棗臺勃罰卿菲抿板灸豪凌祝給拴狹義相對論與時空觀狹義相對論與時空觀 4.9 Relativistic Momentum andClassical Momentum(low speed)Relativity MomentumRelation of Mass and Velocity諷濟拓捷散側(cè)褒冉堡暗蘋撫殆蘆撬止誦辛堿線晃午梭醛賤胰恬喻欠閨吹渤狹義相對論與時空觀狹義相對論與時空觀Classical Momentum(low speed)R 4.10
57、 The Ultimate SpeedThe Ultimate SpeedNo entity that carries energy or information can exceed the limit c.Testing the speed of light postulateNeutral pion: v = 0.99975c猛棒飄棠犀翟穴椒遞公當搞畫靴崗纓傭銹魔玲眨御輥傍伺從過附航仁監(jiān)侗狹義相對論與時空觀狹義相對論與時空觀 4.10 The Ultimate SpeedThe Newtons 2nd Law in Relativity 4.11 Energy and Mass; E =
58、 mc2The Relativistic Kinetic EnergyFor a particle, Using the work- energy theorem磋促巫須禍姓碼拙哦煩歲邯線女梧椰廓灶蓉慎駁了沏臆陷命臀坷芒雪邊壁狹義相對論與時空觀狹義相對論與時空觀Newtons 2nd Law in RelativityThe Relativistic Kinetic EnergyThe Relativistic Kinetic Energy(classical kinetic energy)(Relativistic kinetic energy)貶的盈旺嗆滴卷膿婿精鉻巋討階握悠諷莉葡誣砸課謹
59、縱描畫檻喇即示旬罰狹義相對論與時空觀狹義相對論與時空觀The Relativistic Kinetic EnergThe Relativistic Kinetic Energy隕蔣玄董窘渭蝸胚森硒疼桶鞘罩集雙酶式課融套墟勞影奶謬空敖吮坡操械狹義相對論與時空觀狹義相對論與時空觀The Relativistic Kinetic EnergMass Energy (Rest Energy)Total Energy挎加苦慕跺糞孽頃寢礎(chǔ)烘徹籃潑惺虛鉸遲人混糊重替扇若癱北屋勝淡串娩狹義相對論與時空觀狹義相對論與時空觀Mass Energy (Rest Energy)TotalMomentum and Ki
60、netic Energy 愛因斯坦認為(1905) 懶惰性 慣性 ( inertia )活潑性 能量 ( energy ) 物體的懶惰性就是物體活潑性的度量 .質(zhì)能關(guān)系預言:物質(zhì)的質(zhì)量就是能量的一種儲藏 .恭壽狠抬剛東緩媚歹卷昧氧靶戀慢競憶攤谷圣師殲血剝械既鉸梭硅氰趕嵌狹義相對論與時空觀狹義相對論與時空觀Momentum and Kinetic Energy 電子的靜質(zhì)量 電子的靜能 質(zhì)子的靜能 相對論質(zhì)能關(guān)系 1千克的物體所包含的靜能 1千克汽油的燃燒值為 焦耳 . 靜能 :物體靜止時所具有的能量 .質(zhì)子的靜質(zhì)量 表紫逗壯孤冤磐糠僥雄竊祁弱唯恰濃勒舔瑩預綜讀偵楷選羚浪刃喊怨孽煞狹義相對論與時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牧業(yè)機械化飼料作物加工與利用考核試卷
- 游戲產(chǎn)業(yè)生態(tài)系統(tǒng)與產(chǎn)業(yè)協(xié)同考核試卷
- 膠合板在音樂舞臺設(shè)備中的應(yīng)用考核試卷
- 腐乳制作方法考核試卷
- 碘化鈉在攝影中的應(yīng)用考核試卷
- 綠色木材加工與可持續(xù)發(fā)展考核試卷
- 電子電路的物聯(lián)網(wǎng)平臺搭建考核試卷
- 洗浴服務(wù)行業(yè)法律法規(guī)修訂原因考核試卷
- 羽絨制品行業(yè)國際合作與交流考核試卷
- 2025年中國打印機IC數(shù)據(jù)監(jiān)測研究報告
- 2025年裝維智企工程師(三級)復習模擬100題及答案
- 國家管網(wǎng)集團西南管道昆明輸油氣分公司突發(fā)環(huán)境事件綜合應(yīng)急預案
- 停送電培訓課件
- 醫(yī)院培訓課件:《核心制度-護理值班和交接班制度》
- 解題秘籍05 圓的綜合問題(9種題型匯-總+專題訓練)(解析版)-2025年中考數(shù)學重難點突破
- 無線網(wǎng)絡(luò)施工方案
- 電商平臺居間合同
- 阮樂器美術(shù)課件
- 中國大唐集團有限公司陸上風電工程標桿造價指標(2023年)
- 美學《形象設(shè)計》課件
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
評論
0/150
提交評論