




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回2答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
2、要求的。1在等差數(shù)列中,若(),則數(shù)列的最大值是( )ABC1D32如圖,在等腰梯形中,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是( )ABCD3已知i為虛數(shù)單位,則( )ABCD4已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為( )ABCD5已知集合A,B=,則AB=ABCD6已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是( )ABCD7下列不等式成立的是( )ABCD8設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為( )ABCD9已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則( )A4B3C2D110若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象
3、限D(zhuǎn)第四象限11若雙曲線:繞其對(duì)稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于( )ABC2或D2或12為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說法:越小,則國民分配越公平;設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;若某國家某年的勞倫茨曲線近似為,則;若某國家某年的勞倫茨曲線近似為,則.其中正確的是:ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)、為互不重合的平面,m,n是互不
4、重合的直線,給出下列四個(gè)命題:若mn,則m;若m,n,m,n,則;若,m,n,則mn;若,m,n,mn,則n;其中正確命題的序號(hào)為_14若函數(shù)滿足:是偶函數(shù);的圖象關(guān)于點(diǎn)對(duì)稱.則同時(shí)滿足的,的一組值可以分別是_.15若正實(shí)數(shù)x,y,滿足x+2y=5,則x2-3x+1+2y2-1y的最大值是_16已知正數(shù)a,b滿足a+b=1,則的最小值等于_ ,此時(shí)a=_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)某商場為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場購物的顧客中隨機(jī)抽取了人進(jìn)行問卷調(diào)查調(diào)查后,就顧客“購物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男女是否有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有
5、關(guān)?若在購物體驗(yàn)滿意的問卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購物券若在獲得了元購物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率附表及公式:18(12分)己知等差數(shù)列的公差,且,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.19(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,為正實(shí)數(shù),且,證明:.20(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.21(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實(shí)數(shù)滿足.證明:.22(10分)在中, .求邊上的高.
6、,這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并作答.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí), 取最大即可求得結(jié)果.【詳解】因?yàn)?,所以,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.2A【解析】由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體
7、,易求得其外接球半徑,得球體積【詳解】由題意等腰梯形中,又,是靠邊三角形,從而可得,折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,外接球球心必在高上,設(shè)外接球半徑為,即,解得,球體積為故選:A【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體3A【解析】根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.4A【解析】首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,
8、得,因?yàn)?,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5A【解析】先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點(diǎn)睛】一般地,把不等式組放在數(shù)軸中得出解集。6D【解析】先將所求問題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考
9、查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.7D【解析】根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,錯(cuò)誤;對(duì)于,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.8A【解析】由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),在上有且僅有5個(gè)零點(diǎn),.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.9A【解析】根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到
10、答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.10D【解析】根據(jù)復(fù)數(shù)的運(yùn)算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案【詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對(duì)應(yīng)的點(diǎn)為位于第四象限.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題11C【解析】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線
11、的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.12A【解析】對(duì)于,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以正確.對(duì)于,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以錯(cuò)誤.對(duì)于,因?yàn)?,所以,所以錯(cuò)誤.對(duì)于,因?yàn)?,所以,所以正確.故選A二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.【詳解】對(duì)于,當(dāng)mn時(shí),由直線與平面平行的定義和判定定理,不能得出m,錯(cuò)誤;對(duì)于
12、,當(dāng)m,n,且m,n時(shí),由兩平面平行的判定定理,不能得出,錯(cuò)誤;對(duì)于,當(dāng),且m,n時(shí),由兩平面平行的性質(zhì)定理,不能得出mn,錯(cuò)誤;對(duì)于,當(dāng),且m,n,mn時(shí),由兩平面垂直的性質(zhì)定理,能夠得出n,正確;綜上知,正確命題的序號(hào)是故答案為:【點(diǎn)睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.14,【解析】根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱,得,即,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.1583【解析】分析:將題中的式子進(jìn)行整理,將
13、x+1當(dāng)做一個(gè)整體,之后應(yīng)用已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2y2-1y=(x+1)2-2(x+1)-2x+1+2y-1y=x+1-2+2y-(2x+1+1y)=x+2y-1-16(2x+1+1y)(x+1+2y)=4-16(2+2+4yx+1+x+1y)4-16(4+24)=83,當(dāng)且僅當(dāng)2y=x+1=3等號(hào)成立,故答案是83.點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問題,解決該題的關(guān)鍵是需要對(duì)式子進(jìn)行化簡,轉(zhuǎn)化,利用整體思維,最后注意此類問題的求解方法-相乘,即可得結(jié)果.163 【解析】根據(jù)題意,分析可得,由基本不等式的性
14、質(zhì)可得最小值,進(jìn)而分析基本不等式成立的條件可得a的值,即可得答案【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為3,此時(shí).故答案為:3;.【點(diǎn)睛】本題考查基本不等式及其應(yīng)用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān);.【解析】由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗(yàn)的滿意度與性別有關(guān);獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,從中隨機(jī)抽取人,所有基本事件有個(gè),其中僅有1人是女顧客的基本事件有個(gè),進(jìn)而求出獲得紀(jì)念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所
15、以,有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān)獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,從中隨機(jī)抽取人,所有基本事件有:,共個(gè)其中僅有1人是女顧客的基本事件有:,共個(gè)所以獲得紀(jì)念品的人中僅有人是女顧客的概率【點(diǎn)睛】本小題主要考查統(tǒng)計(jì)案例、卡方分布、概率等基本知識(shí),考查概率統(tǒng)計(jì)基本思想以及抽象概括等能力和應(yīng)用意識(shí),屬于中檔題18(1);(2)證明見解析【解析】(1)根據(jù),成等比數(shù)列,有,結(jié)合公差,求得通項(xiàng),再解不等式.(2)根據(jù)(1),用裂項(xiàng)相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,.又,.,故滿足題意的最大自然數(shù)為.(2),. 從而當(dāng)時(shí),單調(diào)遞增,且,當(dāng)
16、時(shí),單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.19(1)(2)證明見解析【解析】(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)?,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬
17、于中檔題.20(1)在上增;在上減;(2)(i);(ii)2【解析】(1)求導(dǎo)求出,對(duì)分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時(shí),即在上增;當(dāng)時(shí),即在上增;在上減;(2)(i),.(),即,即,只需.當(dāng)時(shí),在單調(diào)遞增,所以滿足題意;當(dāng)時(shí),所以在上減,在上增,令,.在單調(diào)遞減,所以所以在上單調(diào)遞減,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.21(1)或;(2)見解析【解析】(1)根據(jù),利用零點(diǎn)分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1時(shí),即,解得;2時(shí),即,解得;3時(shí),即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞減,在上單調(diào)遞增,所以,正實(shí)數(shù)滿足,則,即,(當(dāng)且僅當(dāng)即時(shí)取等號(hào))故,得證.【點(diǎn)睛】此題考查了絕對(duì)值不等式的解法,絕對(duì)值不等式的性質(zhì)和均值不等式的運(yùn)用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 17249.1-2025聲學(xué)有機(jī)器的低噪聲工作場所設(shè)計(jì)推薦方法第1部分:噪聲控制策略
- 2025年新聞傳播學(xué)專業(yè)課程考試題及答案
- 2025年外科執(zhí)業(yè)醫(yī)生考試試卷及答案
- 2025年通訊工程基礎(chǔ)考試試題及答案
- 2025年生物科學(xué)與技術(shù)試題及答案
- Biotinyl-8-amino-3-6-dioxaoctanoic-acid-生命科學(xué)試劑-MCE
- 2025年農(nóng)業(yè)機(jī)械操作工考試試題及答案
- 2025年老年人心理健康考試試卷及答案總結(jié)
- 2025年酒店管理職業(yè)資格考試試題及答案解讀
- 2025年計(jì)算機(jī)專業(yè)技術(shù)資格考試試卷及答案
- 七年級(jí)數(shù)學(xué)下學(xué)期期末測試卷(1)(學(xué)生版+解析)-2025年七年級(jí)數(shù)學(xué)下學(xué)期期末總復(fù)習(xí)(北師大版)
- 學(xué)院工會(huì)預(yù)算管理制度
- 校園短劇創(chuàng)作與演出指導(dǎo)行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書
- 新生兒收治流程規(guī)范與實(shí)施
- T/CBMCA 017-2021建筑用覆膜鋼板
- 三基三嚴(yán)測試題(附參考答案)
- 2025年油田數(shù)字化運(yùn)維(初級(jí)工)職業(yè)技能等級(jí)認(rèn)定理論考試題庫(含答案)
- 軍隊(duì)食堂管理員崗位職責(zé)
- 山東省青島市西海岸新區(qū)2025屆七年級(jí)數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析
- 《重癥監(jiān)護(hù)病房的臨終關(guān)懷和姑息治療指南》解讀
- 2025年初中地理會(huì)考試卷
評(píng)論
0/150
提交評(píng)論