安徽省六安、舒城2021-2022學年高考數(shù)學押題試卷含解析_第1頁
安徽省六安、舒城2021-2022學年高考數(shù)學押題試卷含解析_第2頁
安徽省六安、舒城2021-2022學年高考數(shù)學押題試卷含解析_第3頁
安徽省六安、舒城2021-2022學年高考數(shù)學押題試卷含解析_第4頁
安徽省六安、舒城2021-2022學年高考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在原點附近的部分圖象大概是( )ABCD2已知實數(shù),滿足,則的最大值等于( )A2BC4D83

2、已知函數(shù),若,則的值等于( )ABCD4已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為( )ABCD5集合的子集的個數(shù)是( )A2B3C4D86定義在R上的函數(shù)y=fx滿足fx2x-1,且y=fx+1為奇函數(shù),則y=fx的圖象可能是( )ABCD7已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是( )ABCD8已知,則( )ABCD9已知x,y滿足不等式,且目標函數(shù)z9x+6y最大值的變化范圍20,22,則t的取值范圍( )A2,4B4,6C5,8D6,710已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為( )ABC3D411已知各項都為正的等差數(shù)

3、列中,若,成等比數(shù)列,則( )ABCD12已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為( )AB40C16D二、填空題:本題共4小題,每小題5分,共20分。13某部隊在訓練之余,由同一場地訓練的甲乙丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為_.14已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為_.15設(shè)命題:,則:_16已知函數(shù),則曲線在處的切線斜率為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的

4、正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設(shè)與交于,兩點,線段的中點為,求.18(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量

5、的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819(12分)設(shè)函數(shù)(1)若,求函數(shù)的值域;(2)設(shè)為的三個內(nèi)角,若,求的值;20(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.21(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.22(10分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設(shè)點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,

6、直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關(guān)于原點對稱,則函數(shù)為奇函數(shù),排除C、D選項;當時,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.2D【解析】畫出可行域,計算出原點到可行域上的點的最大距離,由

7、此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.3B【解析】由函數(shù)的奇偶性可得,【詳解】其中為奇函數(shù),也為奇函數(shù)也為奇函數(shù)故選:B【點睛】函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:奇函數(shù)奇函數(shù)=奇函數(shù);奇函數(shù)奇函數(shù)=偶函數(shù);奇函數(shù)奇函數(shù)=偶函數(shù);偶函數(shù)偶函數(shù)=偶函數(shù);偶函數(shù)偶函數(shù)=偶函數(shù);奇函數(shù)偶函數(shù)=奇函數(shù);奇函數(shù)偶函數(shù)=奇函數(shù)4C【解析】不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,

8、故,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.5D【解析】先確定集合中元素的個數(shù),再得子集個數(shù)【詳解】由題意,有三個元素,其子集有8個故選:D【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個6D【解析】根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計算f1.52排除C,得到答案.【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于1,0中心對稱,排除AB.f1.521.5-1=2,排除C.故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.7C【解析】求出導函數(shù)

9、,由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論【詳解】,.若存在極值,則,又.又故選:C【點睛】本題考查導數(shù)與極值,考查余弦定理掌握極值存在的條件是解題關(guān)鍵8D【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,所以,所以A,B兩項均錯;又,所以,所以C錯;對于D,所以,故選D.【點睛】這個題目考查的是應用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特

10、殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.9B【解析】作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖AOB當t2時,可行域即為如圖中的OAM,此時目標函數(shù)z9x+6y 在A(2,0)取得最大值Z18不符合題意t2時可知目標函數(shù)Z9x+6y在的交點()處取得最大值,此時Zt+16由題意可得,20t+1622解可得4t6故選:B【點睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.10A【解析】根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線

11、的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A【點睛】本題主要考查雙曲線、拋物線的標準方程,關(guān)鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平11A【解析】試題分析:設(shè)公差為或(舍),故選A.考點:等差數(shù)列及其性質(zhì).12D【解析】如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉(zhuǎn)化能力.二、填空題:本題共4

12、小題,每小題5分,共20分。13【解析】分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.1464【解析】由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,由兩式可組成

13、方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎(chǔ)題.15,【解析】存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題. 對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可16【解析】求導后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問

14、題,考查導數(shù)的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),(2)【解析】(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數(shù)方程的標準形式代入曲線C的直角坐標方程,根據(jù)韋達定理以及參數(shù)t的幾何意義可得【詳解】(1)由2得2+2sin22,將2x2+y2,ysin代入上式并整理得曲線C的直角坐標方程為y21,設(shè)點P的直角坐標為(x,y),因為P的極坐標為(,),所以xcoscos1,ysinsin1,所以點P的直角坐標為(1,1)(2)將代入y21,并整理得41t2+110t+250,因為11024412

15、580000,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對應的參數(shù),且t1+t2,依題意,點M對應的參數(shù)為,所以|PM|【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題18(1)見解析,有99%的把握認為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】(1)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結(jié)論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認為經(jīng)常閱讀與居民居住地有關(guān).(2)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)

16、居民中隨機抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數(shù)學期望的計算,考查運算求解能力,屬于基礎(chǔ)題19(1)(2)【解析】(1)將,利用三角恒等變換轉(zhuǎn)化為:,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題,20(1);(2)證明見解析.【解析】(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求

17、得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立, 當時,等價于,該不等式解集為, 當時,等價于,解得, 綜上,或,所以不等式的解集為. (2),易得的最小值為1,即因為,所以,所以, 當且僅當時等號成立.【點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.21(1)詳見解析;(2).【解析】(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標系,求出平面平與平面的法向量,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié) ,且是的中點,平面平面,平面平面,平面. 平面,又為菱形,且為棱的中點,.又,平面平面.(2)由題意有,四邊形為菱形,且 分別以,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為二面角為銳二面角,二面角的余弦值為【點睛】處理線面垂直問題時,需要學生對線面垂直的判定定理特別熟悉,運用幾何語言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學生運用空間向量處理空間中的二面角問題,培養(yǎng)了學生的計算能力和空間想象力.22(1);(2)是定值,.【解析】(1)設(shè)出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論