![小學(xué)數(shù)學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))目30講全[1]_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/e05540c0-8418-4680-a5fb-4f24dc588062/e05540c0-8418-4680-a5fb-4f24dc5880621.gif)
![小學(xué)數(shù)學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))目30講全[1]_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/e05540c0-8418-4680-a5fb-4f24dc588062/e05540c0-8418-4680-a5fb-4f24dc5880622.gif)
![小學(xué)數(shù)學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))目30講全[1]_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/e05540c0-8418-4680-a5fb-4f24dc588062/e05540c0-8418-4680-a5fb-4f24dc5880623.gif)
![小學(xué)數(shù)學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))目30講全[1]_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/e05540c0-8418-4680-a5fb-4f24dc588062/e05540c0-8418-4680-a5fb-4f24dc5880624.gif)
![小學(xué)數(shù)學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))目30講全[1]_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/e05540c0-8418-4680-a5fb-4f24dc588062/e05540c0-8418-4680-a5fb-4f24dc5880625.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、- 99 -小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))第1講 速算與巧算(一) 第2講 速算與巧算(二) 第3講 高斯求和 第4講 4,8,9整除的數(shù)的特征 第5講 棄九法 第6講 數(shù)的整除性(二) 第7講 找規(guī)律(一)第8講 找規(guī)律(二)第9講 數(shù)字謎(一)第10講 數(shù)字謎(二)第11講 歸一問(wèn)題與歸總問(wèn)題第12講 年齡問(wèn)題第13講 雞兔同籠問(wèn)題與假設(shè)法第14講 盈虧問(wèn)題與比較法(一)第15講 盈虧問(wèn)題與比較法(二)第16講 數(shù)陣圖(一)第17講 數(shù)陣圖(二)第18講 數(shù)陣圖(三)第19將 乘法原理第20講 加法原理(一)第21講 加法原理(二)第22講 還原問(wèn)題(一)第23講 還
2、原問(wèn)題(二)第24講 頁(yè)碼問(wèn)題第25講 智取火柴第26講 邏輯問(wèn)題(一)第27講 邏輯問(wèn)題(二)第28講 最不利原則第29講 抽屜原理(一)第30講 抽屜原理(二)第1講 速算與巧算(一)計(jì)算是數(shù)學(xué)的基礎(chǔ),小學(xué)生要學(xué)好數(shù)學(xué),必須具有過(guò)硬的計(jì)算本領(lǐng)。準(zhǔn)確、快速的計(jì)算能力既是一種技巧,也是一種思維訓(xùn)練,既能提高計(jì)算效率、節(jié)省計(jì)算時(shí)間,更可以鍛煉記憶力,提高分析、判斷能力,促進(jìn)思維和智力的發(fā)展。我們?cè)谌昙?jí)已經(jīng)講過(guò)一些四則運(yùn)算的速算與巧算的方法,本講和下一講主要介紹加法的基準(zhǔn)數(shù)法和乘法的補(bǔ)同與同補(bǔ)速算法。例1 四年級(jí)一班第一小組有10名同學(xué),某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)(分?jǐn)?shù))如下:86,78,77,83,9
3、1,74,92,69,84,75。求這10名同學(xué)的總分。分析與解:通常的做法是將這10個(gè)數(shù)直接相加,但這些數(shù)雜亂無(wú)章,直接相加既繁且易錯(cuò)。觀察這些數(shù)不難發(fā)現(xiàn),這些數(shù)雖然大小不等,但相差不大。我們可以選擇一個(gè)適當(dāng)?shù)臄?shù)作“基準(zhǔn)”,比如以“80”作基準(zhǔn),這10個(gè)數(shù)與80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”號(hào)表示這個(gè)數(shù)比80小。于是得到總和=80×10(6-2-3311-8009809。實(shí)際計(jì)算時(shí)只需口算,將這些數(shù)與80的差逐一累加。為了清楚起見(jiàn),將這一過(guò)程表示如下:通過(guò)口算,得到差數(shù)累加為9,再加上80×10,就可口算出結(jié)果為809。例1所
4、用的方法叫做加法的基準(zhǔn)數(shù)法。這種方法適用于加數(shù)較多,而且所有的加數(shù)相差不大的情況。作為“基準(zhǔn)”的數(shù)(如例1的80)叫做基準(zhǔn)數(shù),各數(shù)與基準(zhǔn)數(shù)的差的和叫做累計(jì)差。由例1得到:總和數(shù)=基準(zhǔn)數(shù)×加數(shù)的個(gè)數(shù)+累計(jì)差,平均數(shù)=基準(zhǔn)數(shù)+累計(jì)差÷加數(shù)的個(gè)數(shù)。在使用基準(zhǔn)數(shù)法時(shí),應(yīng)選取與各數(shù)的差較小的數(shù)作為基準(zhǔn)數(shù),這樣才容易計(jì)算累計(jì)差。同時(shí)考慮到基準(zhǔn)數(shù)與加數(shù)個(gè)數(shù)的乘法能夠方便地計(jì)算出來(lái),所以基準(zhǔn)數(shù)應(yīng)盡量選取整十、整百的數(shù)。例2 某農(nóng)場(chǎng)有10塊麥田,每塊的產(chǎn)量如下(單位:千克):462,480,443,420,473,429,468,439,475,461。求平均每塊麥田的產(chǎn)量。解:選基準(zhǔn)數(shù)為4
5、50,則累計(jì)差=123073023211811251150,平均每塊產(chǎn)量=45050÷10455(千克)。答:平均每塊麥田的產(chǎn)量為455千克。求一位數(shù)的平方,在乘法口訣的九九表中已經(jīng)被同學(xué)們熟知,如7×749(七七四十九)。對(duì)于兩位數(shù)的平方,大多數(shù)同學(xué)只是背熟了1020的平方,而2199的平方就不大熟悉了。有沒(méi)有什么竅門,能夠迅速算出兩位數(shù)的平方呢?這里向同學(xué)們介紹一種方法湊整補(bǔ)零法。所謂湊整補(bǔ)零法,就是用所求數(shù)與最接近的整十?dāng)?shù)的差,通過(guò)移多補(bǔ)少,將所求數(shù)轉(zhuǎn)化成一個(gè)整十?dāng)?shù)乘以另一數(shù),再加上零頭的平方數(shù)。下面通過(guò)例題來(lái)說(shuō)明這一方法。例3 求292和822的值。解:292=29
6、×29(291)×(29-1)1230×281840+1841。82282×82(822)×(822)2280×8446720+46724。由上例看出,因?yàn)?9比30少1,所以給29“補(bǔ)”1,這叫“補(bǔ)少”;因?yàn)?2比80多2,所以從82中“移走”2,這叫“移多”。因?yàn)槭莾蓚€(gè)相同數(shù)相乘,所以對(duì)其中一個(gè)數(shù)“移多補(bǔ)少”后,還需要在另一個(gè)數(shù)上“找齊”。本例中,給一個(gè)29補(bǔ)1,就要給另一個(gè)29減1;給一個(gè)82減了2,就要給另一個(gè)82加上2。最后,還要加上“移多補(bǔ)少”的數(shù)的平方。由湊整補(bǔ)零法計(jì)算352,得35×3540×305
7、2=1225。這與三年級(jí)學(xué)的個(gè)位數(shù)是5的數(shù)的平方的速算方法結(jié)果相同。這種方法不僅適用于求兩位數(shù)的平方值,也適用于求三位數(shù)或更多位數(shù)的平方值。例4 求9932和20042的值。解:9932=993×993(9937)×(993-7)+721000×9864998600049986049。20042=2004×2004(2004-4)×(2004+4)422000×2008164016000164016016。下面,我們介紹一類特殊情況的乘法的速算方法。請(qǐng)看下面的算式:66×46,73×88,19×44。這幾
8、道算式具有一個(gè)共同特點(diǎn),兩個(gè)因數(shù)都是兩位數(shù),一個(gè)因數(shù)的十位數(shù)與個(gè)位數(shù)相同,另一因數(shù)的十位數(shù)與個(gè)位數(shù)之和為10。這類算式有非常簡(jiǎn)便的速算方法。例5 88×64?分析與解:由乘法分配律和結(jié)合律,得到88×64(808)×(604)(808)×60(808)×480×608×6080×48×480×6080×680×48×480×(6064)8×480×(6010)8×48×(61)×100+8×4。于
9、是,我們得到下面的速算式:由上式看出,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積,本例為8×4;積中從百位起前面的數(shù)是“個(gè)位與十位相同的因數(shù)”的十位數(shù)與“個(gè)位與十位之和為10的因數(shù)”的十位數(shù)加1的乘積,本例為8×(61)。例6 77×91?解:由例3的解法得到由上式看出,當(dāng)兩個(gè)因數(shù)的個(gè)位數(shù)之積是一位數(shù)時(shí),應(yīng)在十位上補(bǔ)一個(gè)0,本例為7×107。用這種速算法只需口算就可以方便地解答出這類兩位數(shù)的乘法計(jì)算。練習(xí)11.求下面10個(gè)數(shù)的總和:165,152,168,171,148,156,169,161,157,149。2.農(nóng)業(yè)科研小組測(cè)定麥苗的生長(zhǎng)情況,量出12株麥苗的
10、高度分別為(單位:厘米):26,25,25,23,27,28,26,24,29,27,27,25。求這批麥苗的平均高度。3.某車間有9個(gè)工人加工零件,他們加工零件的個(gè)數(shù)分別為:68,91,84,75,78,81,83,72,79。他們共加工了多少個(gè)零件?4.計(jì)算:131610+1117121512161312。5.計(jì)算下列各題:(1)372; (2)532; (3)912;(4)682: (5)1082; (6)3972。6.計(jì)算下列各題:(1)77×28;(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46
11、15;99。 練習(xí)1 答案1.1596。 2.26厘米。3.711個(gè)。 4.147。5.(1)1369; (2)2809; (3)8281;(4)4624; (5)11664; (6)157609。6.(1)2156; (2)3630; (3)627;(4)3608; (5)1221; (6)4554。第2講 速算與巧算(二)上一講我們介紹了一類兩位數(shù)乘法的速算方法,這一講討論乘法的“同補(bǔ)”與“補(bǔ)同”速算法。兩個(gè)數(shù)之和等于10,則稱這兩個(gè)數(shù)互補(bǔ)。在整數(shù)乘法運(yùn)算中,常會(huì)遇到像72×78,26×86等被乘數(shù)與乘數(shù)的十位數(shù)字相同或互補(bǔ),或被乘數(shù)與乘數(shù)的個(gè)位數(shù)字相同或互補(bǔ)
12、的情況。72×78的被乘數(shù)與乘數(shù)的十位數(shù)字相同、個(gè)位數(shù)字互補(bǔ),這類式子我們稱為“頭相同、尾互補(bǔ)”型;26×86的被乘數(shù)與乘數(shù)的十位數(shù)字互補(bǔ)、個(gè)位數(shù)字相同,這類式子我們稱為“頭互補(bǔ)、尾相同”型。計(jì)算這兩類題目,有非常簡(jiǎn)捷的速算方法,分別稱為“同補(bǔ)”速算法和“補(bǔ)同”速算法。例1 (1)76×74? (2)31×39?分析與解:本例兩題都是“頭相同、尾互補(bǔ)”類型。(1)由乘法分配律和結(jié)合律,得到76×74(706)×(70+4)(706)×70(706)×470×706×7070×46
13、15;470×(7064)6×470×(7010)6×47×(7+1)×1006×4。于是,我們得到下面的速算式:(2)與(1)類似可得到下面的速算式:由例1看出,在“頭相同、尾互補(bǔ)”的兩個(gè)兩位數(shù)乘法中,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積(不夠兩位時(shí)前面補(bǔ)0,如1×909),積中從百位起前面的數(shù)是被乘數(shù)(或乘數(shù))的十位數(shù)與十位數(shù)加1的乘積?!巴a(bǔ)”速算法簡(jiǎn)單地說(shuō)就是:積的末兩位是“尾×尾”,前面是“頭×(頭+1)”。我們?cè)谌昙?jí)時(shí)學(xué)到的15×15,25×25,95×
14、95的速算,實(shí)際上就是“同補(bǔ)”速算法。例2 (1)78×38? (2)43×63?分析與解:本例兩題都是“頭互補(bǔ)、尾相同”類型。(1)由乘法分配律和結(jié)合律,得到78×38(708)×(308)(708)×30(708)×870×30+8×3070×88×870×308×(3070)8×87×3×1008×1008×8(7×38)×1008×8。于是,我們得到下面的速算式:(2)與(1)類似可得到下
15、面的速算式:由例2看出,在“頭互補(bǔ)、尾相同”的兩個(gè)兩位數(shù)乘法中,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積(不夠兩位時(shí)前面補(bǔ)0,如3×309),積中從百位起前面的數(shù)是兩個(gè)因數(shù)的十位數(shù)之積加上被乘數(shù)(或乘數(shù))的個(gè)位數(shù)。“補(bǔ)同”速算法簡(jiǎn)單地說(shuō)就是:積的末兩位數(shù)是“尾×尾”,前面是“頭×頭+尾”。例1和例2介紹了兩位數(shù)乘以兩位數(shù)的“同補(bǔ)”或“補(bǔ)同”形式的速算法。當(dāng)被乘數(shù)和乘數(shù)多于兩位時(shí),情況會(huì)發(fā)生什么變化呢?我們先將互補(bǔ)的概念推廣一下。當(dāng)兩個(gè)數(shù)的和是10,100,1000,時(shí),這兩個(gè)數(shù)互為補(bǔ)數(shù),簡(jiǎn)稱互補(bǔ)。如43與57互補(bǔ),99與1互補(bǔ),555與445互補(bǔ)。在一個(gè)乘法算式中,當(dāng)被
16、乘數(shù)與乘數(shù)前面的幾位數(shù)相同,后面的幾位數(shù)互補(bǔ)時(shí),這個(gè)算式就是“同補(bǔ)”型,即“頭相同,尾互補(bǔ)”型。例如, 因?yàn)楸怀藬?shù)與乘數(shù)的前兩位數(shù)相同,都是70,后兩位數(shù)互補(bǔ),7723100,所以是“同補(bǔ)”型。又如,等都是“同補(bǔ)”型。當(dāng)被乘數(shù)與乘數(shù)前面的幾位數(shù)互補(bǔ),后面的幾位數(shù)相同時(shí),這個(gè)乘法算式就是“補(bǔ)同”型,即“頭互補(bǔ),尾相同”型。例如,等都是“補(bǔ)同”型。在計(jì)算多位數(shù)的“同補(bǔ)”型乘法時(shí),例1的方法仍然適用。例3 (1)702×708=? (2)1708×1792?解:(1)(2)計(jì)算多位數(shù)的“同補(bǔ)”型乘法時(shí),將“頭×(頭+1)”作為乘積的前幾位,將兩個(gè)互補(bǔ)數(shù)之積作為乘積的后幾
17、位。注意:互補(bǔ)數(shù)如果是n位數(shù),則應(yīng)占乘積的后2n位,不足的位補(bǔ)“0”。在計(jì)算多位數(shù)的“補(bǔ)同”型乘法時(shí),如果“補(bǔ)”與“同”,即“頭”與“尾”的位數(shù)相同,那么例2的方法仍然適用(見(jiàn)例4);如果“補(bǔ)”與“同”的位數(shù)不相同,那么例2的方法不再適用,因?yàn)闆](méi)有簡(jiǎn)捷實(shí)用的方法,所以就不再討論了。例4 2865×7265?解: 練習(xí)2計(jì)算下列各題:1.68×62; 2.93×97;3.27×87; 4.79×39;5.42×62; 6.603×607;7.693×607; 8.4085×6085。 第
18、3講 高斯求和德國(guó)著名數(shù)學(xué)家高斯幼年時(shí)代聰明過(guò)人,上學(xué)時(shí),有一天老師出了一道題讓同學(xué)們計(jì)算:123499100?老師出完題后,全班同學(xué)都在埋頭計(jì)算,小高斯卻很快算出答案等于5050。高斯為什么算得又快又準(zhǔn)呢?原來(lái)小高斯通過(guò)細(xì)心觀察發(fā)現(xiàn):110029939849525051。1100正好可以分成這樣的50對(duì)數(shù),每對(duì)數(shù)的和都相等。于是,小高斯把這道題巧算為(1+100)×100÷25050。小高斯使用的這種求和方法,真是聰明極了,簡(jiǎn)單快捷,并且廣泛地適用于“等差數(shù)列”的求和問(wèn)題。若干個(gè)數(shù)排成一列稱為數(shù)列,數(shù)列中的每一個(gè)數(shù)稱為一項(xiàng),其中第一項(xiàng)稱為首項(xiàng),最后一項(xiàng)稱為末項(xiàng)。后項(xiàng)與前項(xiàng)
19、之差都相等的數(shù)列稱為等差數(shù)列,后項(xiàng)與前項(xiàng)之差稱為公差。例如:(1)1,2,3,4,5,100;(2)1,3,5,7,9,99;(3)8,15,22,29,36,71。其中(1)是首項(xiàng)為1,末項(xiàng)為100,公差為1的等差數(shù)列;(2)是首項(xiàng)為1,末項(xiàng)為99,公差為2的等差數(shù)列;(3)是首項(xiàng)為8,末項(xiàng)為71,公差為7的等差數(shù)列。由高斯的巧算方法,得到等差數(shù)列的求和公式:和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2。例1 1231999?分析與解:這串加數(shù)1,2,3,1999是等差數(shù)列,首項(xiàng)是1,末項(xiàng)是1999,共有1999個(gè)數(shù)。由等差數(shù)列求和公式可得原式=(11999)×1999
20、7;21999000。注意:利用等差數(shù)列求和公式之前,一定要判斷題目中的各個(gè)加數(shù)是否構(gòu)成等差數(shù)列。例2 11121331?分析與解:這串加數(shù)11,12,13,31是等差數(shù)列,首項(xiàng)是11,末項(xiàng)是31,共有31-11121(項(xiàng))。原式=(11+31)×21÷2=441。在利用等差數(shù)列求和公式時(shí),有時(shí)項(xiàng)數(shù)并不是一目了然的,這時(shí)就需要先求出項(xiàng)數(shù)。根據(jù)首項(xiàng)、末項(xiàng)、公差的關(guān)系,可以得到項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1,末項(xiàng)=首項(xiàng)+公差×(項(xiàng)數(shù)-1)。例3 371199?分析與解:3,7,11,99是公差為4的等差數(shù)列,項(xiàng)數(shù)=(993)÷4125,原式=(39
21、9)×25÷21275。例4 求首項(xiàng)是25,公差是3的等差數(shù)列的前40項(xiàng)的和。解:末項(xiàng)=253×(40-1)142,和=(25142)×40÷23340。利用等差數(shù)列求和公式及求項(xiàng)數(shù)和末項(xiàng)的公式,可以解決各種與等差數(shù)列求和有關(guān)的問(wèn)題。例5 在下圖中,每個(gè)最小的等邊三角形的面積是12厘米2,邊長(zhǎng)是1根火柴棍。問(wèn):(1)最大三角形的面積是多少平方厘米?(2)整個(gè)圖形由多少根火柴棍擺成?分析:最大三角形共有8層,從上往下擺時(shí),每層的小三角形數(shù)目及所用火柴數(shù)目如下表:由上表看出,各層的小三角形數(shù)成等差數(shù)列,各層的火柴數(shù)也成等差數(shù)列。解:(1)最大三角形
22、面積為(13515)×12(115)×8÷2×12768(厘米2)。2)火柴棍的數(shù)目為369+24(324)×8÷2=108(根)。答:最大三角形的面積是768厘米2,整個(gè)圖形由108根火柴擺成。例6 盒子里放有三只乒乓球,一位魔術(shù)師第一次從盒子里拿出一只球,將它變成3只球后放回盒子里;第二次又從盒子里拿出二只球,將每只球各變成3只球后放回盒子里第十次從盒子里拿出十只球,將每只球各變成3只球后放回到盒子里。這時(shí)盒子里共有多少只乒乓球?分析與解:一只球變成3只球,實(shí)際上多了2只球。第一次多了2只球,第二次多了2×2只球第十次多
23、了2×10只球。因此拿了十次后,多了2×12×22×102×(1210)2×55110(只)。加上原有的3只球,盒子里共有球1103113(只)。綜合列式為:(3-1)×(1210)32×(110)×10÷23113(只)。 練習(xí)31.計(jì)算下列各題:(1)246200;(2)17192139;(3)58111450;(4)3101724101。2.求首項(xiàng)是5,末項(xiàng)是93,公差是4的等差數(shù)列的和。3.求首項(xiàng)是13,公差是5的等差數(shù)列的前30項(xiàng)的和。4.時(shí)鐘在每個(gè)整點(diǎn)敲打,敲打的次數(shù)等于該
24、鐘點(diǎn)數(shù),每半點(diǎn)鐘也敲一下。問(wèn):時(shí)鐘一晝夜敲打多少次?5.求100以內(nèi)除以3余2的所有數(shù)的和。6.在所有的兩位數(shù)中,十位數(shù)比個(gè)位數(shù)大的數(shù)共有多少個(gè)?第四講我們?cè)谌昙?jí)已經(jīng)學(xué)習(xí)了能被2,3,5整除的數(shù)的特征,這一講我們將討論整除的性質(zhì),并講解能被4,8,9整除的數(shù)的特征。數(shù)的整除具有如下性質(zhì):性質(zhì)1 如果甲數(shù)能被乙數(shù)整除,乙數(shù)能被丙數(shù)整除,那么甲數(shù)一定能被丙數(shù)整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。性質(zhì)2 如果兩個(gè)數(shù)都能被一個(gè)自然數(shù)整除,那么這兩個(gè)數(shù)的和與差也一定能被這個(gè)自然數(shù)整除。例如,21與15都能被3整除,那么2115及21-15都能被3整除。性質(zhì)3 如果一個(gè)數(shù)
25、能分別被兩個(gè)互質(zhì)的自然數(shù)整除,那么這個(gè)數(shù)一定能被這兩個(gè)互質(zhì)的自然數(shù)的乘積整除。例如,126能被9整除,又能被7整除,且9與7互質(zhì),那么126能被9×763整除。利用上面關(guān)于整除的性質(zhì),我們可以解決許多與整除有關(guān)的問(wèn)題。為了進(jìn)一步學(xué)習(xí)數(shù)的整除性,我們把學(xué)過(guò)的和將要學(xué)習(xí)的一些整除的數(shù)字特征列出來(lái):(1)一個(gè)數(shù)的個(gè)位數(shù)字如果是0,2,4,6,8中的一個(gè),那么這個(gè)數(shù)就能被2整除。(2)一個(gè)數(shù)的個(gè)位數(shù)字如果是0或5,那么這個(gè)數(shù)就能被5整除。(3)一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被3整除,那么這個(gè)數(shù)就能被3整除。(4)一個(gè)數(shù)的末兩位數(shù)如果能被4(或25)整除,那么這個(gè)數(shù)就能被4(或25)整除。(
26、5)一個(gè)數(shù)的末三位數(shù)如果能被8(或125)整除,那么這個(gè)數(shù)就能被8(或125)整除。(6)一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被9整除,那么這個(gè)數(shù)就能被9整除。其中(1)(2)(3)是三年級(jí)學(xué)過(guò)的內(nèi)容,(4)(5)(6)是本講要學(xué)習(xí)的內(nèi)容。因?yàn)?00能被4(或25)整除,所以由整除的性質(zhì)1知,整百的數(shù)都能被4(或25)整除。因?yàn)槿魏巫匀粩?shù)都能分成一個(gè)整百的數(shù)與這個(gè)數(shù)的后兩位數(shù)之和,所以由整除的性質(zhì)2知,只要這個(gè)數(shù)的后兩位數(shù)能被4(或25)整除,這個(gè)數(shù)就能被4(或25)整除。這就證明了(4)。類似地可以證明(5)。(6)的正確性,我們用一個(gè)具體的數(shù)來(lái)說(shuō)明一般性的證明方法。8378003078
27、5;1003×1078×(991)3×(91)78×9983×937(8×993×9)(837)。因?yàn)?9和9都能被9整除,所以根據(jù)整除的性質(zhì)1和性質(zhì)2知,(8x993x9)能被9整除。再根據(jù)整除的性質(zhì)2,由(837)能被9整除,就能判斷837能被9整除。利用(4)(5)(6)還可以求出一個(gè)數(shù)除以4,8,9的余數(shù):(4)一個(gè)數(shù)除以4的余數(shù),與它的末兩位除以4的余數(shù)相同。(5)一個(gè)數(shù)除以8的余數(shù),與它的末三位除以8的余數(shù)相同。(6)一個(gè)數(shù)除以9的余數(shù),與它的各位數(shù)字之和除以9的余數(shù)相同。例1 在下面的數(shù)中,哪些能被4整除?哪些
28、能被8整除?哪些能被9整除?234,789,7756,8865,3728.8064。解:能被4整除的數(shù)有7756,3728,8064;能被8整除的數(shù)有3728,8064;能被9整除的數(shù)有234,8865,8064。例2 在四位數(shù)562中,被蓋住的十位數(shù)分別等于幾時(shí),這個(gè)四位數(shù)分別能被9,8,4整除?解:如果562能被9整除,那么56213應(yīng)能被9整除,所以當(dāng)十位數(shù)是5,即四位數(shù)是5652時(shí)能被9整除;如果562能被8整除,那么62應(yīng)能被8整除,所以當(dāng)十位數(shù)是3或7,即四位數(shù)是5632或5672時(shí)能被8整除;如果562能被4整除,那么2應(yīng)能被4整除,所以當(dāng)十位數(shù)是1,3,5,7,9,即四位數(shù)是5
29、612,5632,5652,5672,5692時(shí)能被4整除。到現(xiàn)在為止,我們已經(jīng)學(xué)過(guò)能被2,3,5,4,8,9整除的數(shù)的特征。根據(jù)整除的性質(zhì)3,我們可以把判斷整除的范圍進(jìn)一步擴(kuò)大。例如,判斷一個(gè)數(shù)能否被6整除,因?yàn)?2×3,2與3互質(zhì),所以如果這個(gè)數(shù)既能被2整除又能被3整除,那么根據(jù)整除的性質(zhì)3,可判定這個(gè)數(shù)能被6整除。同理,判斷一個(gè)數(shù)能否被12整除,只需判斷這個(gè)數(shù)能否同時(shí)被3和4整除;判斷一個(gè)數(shù)能否被72整除,只需判斷這個(gè)數(shù)能否同時(shí)被8和9整除;如此等等。例3 從0,2,5,7四個(gè)數(shù)字中任選三個(gè),組成能同時(shí)被2,5,3整除的數(shù),并將這些數(shù)從小到大進(jìn)行排列。解:因?yàn)榻M成的三位數(shù)能同時(shí)
30、被2,5整除,所以個(gè)位數(shù)字為0。根據(jù)三位數(shù)能被3整除的特征,數(shù)字和270與570都能被3整除,因此所求的這些數(shù)為270,570,720,750。例4 五位數(shù)能被72整除,問(wèn):A與B各代表什么數(shù)字?分析與解:已知能被72整除。因?yàn)?28×9,8和9是互質(zhì)數(shù),所以既能被8整除,又能被9整除。根據(jù)能被8整除的數(shù)的特征,要求能被8整除,由此可確定B6。再根據(jù)能被9整除的數(shù)的特征,的各位數(shù)字之和為A329BA3f296A20,因?yàn)閘A9,所以21A2029。在這個(gè)范圍內(nèi)只有27能被9整除,所以A7。解答例4的關(guān)鍵是把72分解成8×9,再分別根據(jù)能被8和9整除的數(shù)的特征去討論B和A所代
31、表的數(shù)字。在解題順序上,應(yīng)先確定B所代表的數(shù)字,因?yàn)锽代表的數(shù)字不受A的取值大小的影響,一旦B代表的數(shù)字確定下來(lái),A所代表的數(shù)字就容易確定了。例5 六位數(shù)是6的倍數(shù),這樣的六位數(shù)有多少個(gè)?分析與解:因?yàn)?2×3,且2與3互質(zhì),所以這個(gè)整數(shù)既能被2整除又能被3整除。由六位數(shù)能被2整除,推知A可取0,2,4,6,8這五個(gè)值。再由六位數(shù)能被3整除,推知3ABABA33A2B能被3整除,故2B能被3整除。B可取0,3,6,9這4個(gè)值。由于B可以取4個(gè)值,A可以取5個(gè)值,題目沒(méi)有要求AB,所以符合條件的六位數(shù)共有5×420(個(gè))。例6 要使六位數(shù)能被36整除,而且所得的商最小,問(wèn)A,
32、B,C各代表什么數(shù)字?分析與解:因?yàn)?64×9,且4與9互質(zhì),所以這個(gè)六位數(shù)應(yīng)既能被4整除又能被9整除。六位數(shù)能被4整除,就要能被4整除,因此C可取1,3,5,7,9。要使所得的商最小,就要使這個(gè)六位數(shù)盡可能小。因此首先是A盡量小,其次是B盡量小,最后是C盡量小。先試取A=0。六位數(shù)的各位數(shù)字之和為12BC。它應(yīng)能被9整除,因此BC6或BC15。因?yàn)锽,C應(yīng)盡量小,所以BC6,而C只能取1,3,5,7,9,所以要使盡可能小,應(yīng)取B1,C5。當(dāng)A=0,B=1,C5時(shí),六位數(shù)能被36整除,而且所得商最小,為150156÷364171。練習(xí)416539724能被4,8,9,24,
33、36,72中的哪幾個(gè)數(shù)整除?2個(gè)位數(shù)是5,且能被9整除的三位數(shù)共有多少個(gè)?3一些四位數(shù),百位上的數(shù)字都是3,十位上的數(shù)字都是6,并且它們既能被2整除又能被3整除。在這樣的四位數(shù)中,最大的和最小的各是多少?4五位數(shù)能被12整除,求這個(gè)五位數(shù)。5有一個(gè)能被24整除的四位數(shù)23,這個(gè)四位數(shù)最大是幾?最小是幾?6從0,2,3,6,7這五個(gè)數(shù)碼中選出四個(gè),可以組成多少個(gè)可以被8整除的沒(méi)有重復(fù)數(shù)字的四位數(shù)?7在123的左右各添一個(gè)數(shù)碼,使得到的五位數(shù)能被72整除。8學(xué)校買了72只小足球,發(fā)票上的總價(jià)有兩個(gè)數(shù)字已經(jīng)辨認(rèn)不清,只看到是67.9元,你知道每只小足球多少錢嗎? 第5講 棄九法從第4講知道,如果一個(gè)
34、數(shù)的各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)能被9整除;如果一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和被9除余數(shù)是幾,那么這個(gè)數(shù)被9除的余數(shù)也一定是幾。利用這個(gè)性質(zhì)可以迅速地判斷一個(gè)數(shù)能否被9整除或者求出被9除的余數(shù)是幾。例如,3645732這個(gè)數(shù),各個(gè)數(shù)位上的數(shù)字之和為364573230,30被9除余3,所以3645732這個(gè)數(shù)不能被9整除,且被9除后余數(shù)為3。但是,當(dāng)一個(gè)數(shù)的數(shù)位較多時(shí),這種計(jì)算麻煩且易錯(cuò)。有沒(méi)有更簡(jiǎn)便的方法呢?因?yàn)槲覀冎皇桥袛噙@個(gè)式子被9除的余數(shù),所以凡是若干個(gè)數(shù)的和是9時(shí),就把這些數(shù)劃掉,如369,459,729,把這些數(shù)劃掉后,最多只剩下一個(gè)3(如下圖),所以這個(gè)數(shù)除以9的余數(shù)是3
35、。這種將和為9或9的倍數(shù)的數(shù)字劃掉,用剩下的數(shù)字和求除以9的余數(shù)的方法,叫做棄九法。一個(gè)數(shù)被9除的余數(shù)叫做這個(gè)數(shù)的九余數(shù)。利用棄九法可以計(jì)算一個(gè)數(shù)的九余數(shù),還可以檢驗(yàn)四則運(yùn)算的正確性。例1 求多位數(shù)7645821369815436715除以9的余數(shù)。分析與解:利用棄九法,將和為9的數(shù)依次劃掉。只剩下7,6,1,5四個(gè)數(shù),這時(shí)口算一下即可。口算知,7,6,5的和是9的倍數(shù),又可劃掉,只剩下1。所以這個(gè)多位數(shù)除以9余1。例2 將自然數(shù)1,2,3,依次無(wú)間隔地寫下去組成一個(gè)數(shù)1234567891011213如果一直寫到自然數(shù)100,那么所得的數(shù)除以9的余數(shù)是多少?分析與解:因?yàn)檫@個(gè)數(shù)太大,全部寫出來(lái)
36、很麻煩,在使用棄九法時(shí)不能逐個(gè)劃掉和為9或9的倍數(shù)的數(shù),所以要配合適當(dāng)?shù)姆治?。我們已?jīng)熟知123945,而45是9的倍數(shù),所以每一組1,2,3,9都可以劃掉。在199這九十九個(gè)數(shù)中,個(gè)位數(shù)有十組1,2,3,9,都可劃掉;十位數(shù)也有十組1,2,3,9,也都劃掉。這樣在這個(gè)大數(shù)中,除了0以外,只剩下最后的100中的數(shù)字1。所以這個(gè)數(shù)除以9余1。在上面的解法中,并沒(méi)有計(jì)算出這個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字和,而是利用棄九法分析求解。本題還有其它簡(jiǎn)捷的解法。因?yàn)橐粋€(gè)數(shù)與它的各個(gè)數(shù)位上的數(shù)字之和除以9的余數(shù)相同,所以題中這個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和,與12100除以9的余數(shù)相同。利用高斯求和法,知此和是5050。因
37、為5050的數(shù)字和為5050=10,利用棄九法,棄去一個(gè)9余1,故5050除以9余1。因此題中的數(shù)除以9余1。例3 檢驗(yàn)下面的加法算式是否正確:26384573521983674578512907225。分析與解:若干個(gè)加數(shù)的九余數(shù)相加,所得和的九余數(shù)應(yīng)當(dāng)?shù)扔谶@些加數(shù)的和的九余數(shù)。如果不等,那么這個(gè)加法算式肯定不正確。上式中,三個(gè)加數(shù)的九余數(shù)依次為8,4,6,8+4+6的九余數(shù)為0;和的九余數(shù)為1。因?yàn)?1,所以這個(gè)算式不正確。例4 檢驗(yàn)下面的減法算式是否正確:7832145-21679535664192。分析與解:被減數(shù)的九余數(shù)減去減數(shù)的九余數(shù)(若不夠減,可在被減數(shù)的九余數(shù)上加9,然后再減)
38、應(yīng)當(dāng)?shù)扔诓畹木庞鄶?shù)。如果不等,那么這個(gè)減法計(jì)算肯定不正確。上式中被減數(shù)的九余數(shù)是3,減數(shù)的九余數(shù)是6,由(9+3)-66知,原題等號(hào)左邊的九余數(shù)是6。等號(hào)右邊的九余數(shù)也是6。因?yàn)?6,所以這個(gè)減法運(yùn)算可能正確。值得注意的是,這里我們用的是“可能正確”。利用棄九法檢驗(yàn)加法、減法、乘法(見(jiàn)例5)運(yùn)算的結(jié)果是否正確時(shí),如果等號(hào)兩邊的九余數(shù)不相等,那么這個(gè)算式肯定不正確;如果等號(hào)兩邊的九余數(shù)相等,那么還不能確定算式是否正確,因?yàn)榫庞鄶?shù)只有0,1,2,8九種情況,不同的數(shù)可能有相同的九余數(shù)。所以用棄九法檢驗(yàn)運(yùn)算的正確性,只是一種粗略的檢驗(yàn)。例5 檢驗(yàn)下面的乘法算式是否正確:46876×9537
39、447156412。分析與解:兩個(gè)因數(shù)的九余數(shù)相乘,所得的數(shù)的九余數(shù)應(yīng)當(dāng)?shù)扔趦蓚€(gè)因數(shù)的乘積的九余數(shù)。如果不等,那么這個(gè)乘法計(jì)算肯定不正確。上式中,被乘數(shù)的九余數(shù)是4,乘數(shù)的九余數(shù)是6,4×624,24的九余數(shù)是6。乘積的九余數(shù)是7。67,所以這個(gè)算式不正確。說(shuō)明:因?yàn)槌ㄊ浅朔ǖ哪孢\(yùn)算,被除數(shù)=除數(shù)×商+余數(shù),所以當(dāng)余數(shù)為零時(shí),利用棄九法驗(yàn)算除法可化為用棄九法去驗(yàn)算乘法。例如,檢驗(yàn)383801÷253=1517的正確性,只需檢驗(yàn)1517×253=383801的正確性。練習(xí)51求下列各數(shù)除以9的余數(shù):(1)7468251; (2)36298745;(3)2
40、657348; (4)6678254193。2求下列各式除以9的余數(shù):(1)6723582564; (2)97256-47823;(3)2783×6451; (4)3477+265×841。3用棄九法檢驗(yàn)下列各題計(jì)算的正確性:(1)228×22250616;(2)334×336112224;(3)23372428÷62363748;(4)12345÷678983810105。4有一個(gè)2000位的數(shù)A能被9整除,數(shù)A的各個(gè)數(shù)位上的數(shù)字之和是B,數(shù)B的各個(gè)數(shù)位上的數(shù)字之和是C,數(shù)C的各個(gè)數(shù)位上的數(shù)字之和是D。求D。第6講 數(shù)的整除性(二)
41、這一講主要講能被11整除的數(shù)的特征。一個(gè)數(shù)從右邊數(shù)起,第1,3,5,位稱為奇數(shù)位,第2,4,6,位稱為偶數(shù)位。也就是說(shuō),個(gè)位、百位、萬(wàn)位是奇數(shù)位,十位、千位、十萬(wàn)位是偶數(shù)位。例如9位數(shù)768325419中,奇數(shù)位與偶數(shù)位如下圖所示:能被11整除的數(shù)的特征:一個(gè)數(shù)的奇數(shù)位上的數(shù)字之和與偶數(shù)位上的數(shù)字之和的差(大數(shù)減小數(shù))如果能被11整除,那么這個(gè)數(shù)就能被11整除。例1 判斷七位數(shù)1839673能否被11整除。分析與解:奇數(shù)位上的數(shù)字之和為1363=13,偶數(shù)位上的數(shù)字之和為897=24,因?yàn)?4-13=11能被11整除,所以1839673能被11整除。根據(jù)能被11整除的數(shù)的特征,也能求出一個(gè)數(shù)除
42、以11的余數(shù)。一個(gè)數(shù)除以11的余數(shù),與它的奇數(shù)位上的數(shù)字之和減去偶數(shù)位上的數(shù)字之和所得的差除以11的余數(shù)相同。如果奇數(shù)位上的數(shù)字之和小于偶數(shù)位上的數(shù)字之和,那么應(yīng)在奇數(shù)位上的數(shù)字之和上再增加11的整數(shù)倍,使其大于偶數(shù)位上的數(shù)字之和。例2 求下列各數(shù)除以11的余數(shù):(1)41873; (2)296738185。分析與解:(1)(483)(17)÷11=7÷1107,所以41873除以11的余數(shù)是7。(2)奇數(shù)位之和為26315=17,偶數(shù)位之和為978832。因?yàn)?732,所以應(yīng)給17增加11的整數(shù)倍,使其大于32。(17+11×2)-327,所以296738185
43、除以11的余數(shù)是7。需要說(shuō)明的是,當(dāng)奇數(shù)位數(shù)字之和遠(yuǎn)遠(yuǎn)小于偶數(shù)位數(shù)字之和時(shí),為了計(jì)算方便,也可以用偶數(shù)位數(shù)字之和減去奇數(shù)位數(shù)字之和,再除以11,所得余數(shù)與11的差即為所求。如上題(2)中,(32-17)÷1114,所求余數(shù)是11-4=7。例3 求除以11的余數(shù)。分析與解:奇數(shù)位是101個(gè)1,偶數(shù)位是100個(gè)9。(9×100-1×101)÷11=799÷11=727,11-7=4,所求余數(shù)是4。例3還有其它簡(jiǎn)捷解法,例如每個(gè)“19”奇偶數(shù)位上的數(shù)字相差9-18, 奇數(shù)位上的數(shù)字和與偶數(shù)位上的數(shù)字和相差8×99=8×9×
44、;11,能被11整除。所以例3相當(dāng)于求最后三位數(shù)191除以11的余數(shù)。例4 用3,3,7,7四個(gè)數(shù)碼能排出哪些能被11整除的四位數(shù)?解:只要奇數(shù)位和偶數(shù)位上各有一個(gè)3和一個(gè)7即可。有3377,3773,7337,7733。例5 用19九個(gè)數(shù)碼組成能被11整除的沒(méi)有重復(fù)數(shù)字的最大九位數(shù)。分析與解:最大的沒(méi)有重復(fù)數(shù)字的九位數(shù)是987654321,由(97531)-(8642)5知,987654321不能被11整除。為了保證這個(gè)數(shù)盡可能大,我們盡量調(diào)整低位數(shù)字,只要使奇數(shù)位的數(shù)字和增加3(偶數(shù)位的數(shù)字和自然就減少3),奇數(shù)位的數(shù)字之和與偶數(shù)位的數(shù)字之和的差就變?yōu)?3×2=11,這個(gè)數(shù)就能被
45、11整除。調(diào)整“4321”,只要4調(diào)到奇數(shù)位,1調(diào)到偶數(shù)位,奇數(shù)位就比原來(lái)增大3,就可達(dá)到目的。此時(shí),4,3在奇數(shù)位,2,1在偶數(shù)位,后四位最大是2413。所求數(shù)為987652413。例6 六位數(shù)能被99整除,求A和B。分析與解:由99=9×11,且9與11互質(zhì),所以六位數(shù)既能被9整除又能被11整除。因?yàn)榱粩?shù)能被9整除,所以A+2+8+7+5+B22+A+B應(yīng)能被9整除,由此推知AB5或14。又因?yàn)榱粩?shù)能被11整除,所以(A85)(27B)A-B4應(yīng)能被11整除,即A-B+4=0或A-B+4=11。化簡(jiǎn)得B-A4或A-B7。因?yàn)锳+B與A-B同奇同偶,所以有在(1)中,A5與A7
46、不能同時(shí)滿足,所以無(wú)解。在(2)中,上、下兩式相加,得(BA)(B-A)144,2B18,B=9。將B=9代入AB=14,得A5。所以,A=5,B9。 練習(xí)61為使五位數(shù)6295能被11整除,內(nèi)應(yīng)當(dāng)填幾?2用1,2,3,4四個(gè)數(shù)碼能排出哪些能被11整除的沒(méi)有重復(fù)數(shù)字的四位數(shù)?3求能被11整除的最大的沒(méi)有重復(fù)數(shù)字的五位數(shù)。4求下列各數(shù)除以11的余數(shù):(1)2485; (2)63582; (3)987654321。5求除以11的余數(shù)。6六位數(shù)5A634B能被33整除,求A+B。7七位數(shù)3A8629B是88的倍數(shù),求A和B。第7講 找規(guī)律(一)我們?cè)谌昙?jí)已經(jīng)見(jiàn)過(guò)“找規(guī)律”這個(gè)題目,學(xué)習(xí)了
47、如何發(fā)現(xiàn)圖形、數(shù)表和數(shù)列的變化規(guī)律。這一講重點(diǎn)學(xué)習(xí)具有“周期性”變化規(guī)律的問(wèn)題。什么是周期性變化規(guī)律呢?比如,一年有春夏秋冬四季,百花盛開(kāi)的春季過(guò)后就是夏天,赤日炎炎的夏季過(guò)后就是秋天,果實(shí)累累的秋季過(guò)后就是冬天,白雪皚皚的冬季過(guò)后又到了春天。年復(fù)一年,總是按照春、夏、秋、冬四季變化,這就是周期性變化規(guī)律。再比如,數(shù)列0,1,2,0,1,2,0,1,2,0,是按照0,1,2三個(gè)數(shù)重復(fù)出現(xiàn)的,這也是周期性變化問(wèn)題。下面,我們通過(guò)一些例題作進(jìn)一步講解。例1 節(jié)日的夜景真漂亮,街上的彩燈按照5盞紅燈、再接4盞藍(lán)燈、再接3盞黃燈,然后又是5盞紅燈、4盞藍(lán)燈、3盞黃燈、這樣排下去。問(wèn):(1)第100盞燈
48、是什么顏色?(2)前150盞彩燈中有多少盞藍(lán)燈?分析與解:這是一個(gè)周期變化問(wèn)題。彩燈按照5紅、4藍(lán)、3黃,每12盞燈一個(gè)周期循環(huán)出現(xiàn)。(1)100÷1284,所以第100盞燈是第9個(gè)周期的第4盞燈,是紅燈。(2)150÷12=126,前150盞燈共有12個(gè)周期零6盞燈,12個(gè)周期中有藍(lán)燈4×1248(盞),最后的6盞燈中有1盞藍(lán)燈,所以共有藍(lán)燈481=49(盞)。例2 有一串?dāng)?shù),任何相鄰的四個(gè)數(shù)之和都等于25。已知第1個(gè)數(shù)是3,第6個(gè)數(shù)是6,第11個(gè)數(shù)是7。問(wèn):這串?dāng)?shù)中第24個(gè)數(shù)是幾?前77個(gè)數(shù)的和是多少?分析與解:因?yàn)榈?,2,3,4個(gè)數(shù)的和等于第2,3,4,5
49、個(gè)數(shù)的和,所以第1個(gè)數(shù)與第5個(gè)數(shù)相同。進(jìn)一步可推知,第1,5,9,13,個(gè)數(shù)都相同。同理,第2,6,10,14,個(gè)數(shù)都相同,第3,7,11,15,個(gè)數(shù)都相同,第4,8,12,16個(gè)數(shù)都相同。也就是說(shuō),這串?dāng)?shù)是按照每四個(gè)數(shù)為一個(gè)周期循環(huán)出現(xiàn)的。所以,第2個(gè)數(shù)等于第6個(gè)數(shù),是6;第3個(gè)數(shù)等于第11個(gè)數(shù),是7。前三個(gè)數(shù)依次是3,6,7,第四個(gè)數(shù)是25-(3+6+7)=9。這串?dāng)?shù)按照3,6,7,9的順序循環(huán)出現(xiàn)。第24個(gè)數(shù)與第4個(gè)數(shù)相同,是9。由77÷491知,前77個(gè)數(shù)是19個(gè)周期零1個(gè)數(shù),其和為25×19+3=478。例3 下面這串?dāng)?shù)的規(guī)律是:從第3個(gè)數(shù)起,每個(gè)數(shù)都是它前面兩個(gè)
50、數(shù)之和的個(gè)位數(shù)。問(wèn):這串?dāng)?shù)中第88個(gè)數(shù)是幾?628088640448分析與解:這串?dāng)?shù)看起來(lái)沒(méi)有什么規(guī)律,但是如果其中有兩個(gè)相鄰數(shù)字與前面的某兩個(gè)相鄰數(shù)字相同,那么根據(jù)這串?dāng)?shù)的構(gòu)成規(guī)律,這兩個(gè)相鄰數(shù)字后面的數(shù)字必然與前面那兩個(gè)相鄰數(shù)字后面的數(shù)字相同,也就是說(shuō)將出現(xiàn)周期性變化。我們?cè)囍鴮⑦@串?dāng)?shù)再多寫出幾位:當(dāng)寫出第21,22位(豎線右面的兩位)時(shí)就會(huì)發(fā)現(xiàn),它們與第1,2位數(shù)相同,所以這串?dāng)?shù)按每20個(gè)數(shù)一個(gè)周期循環(huán)出現(xiàn)。由88÷20=48知,第88個(gè)數(shù)與第8個(gè)數(shù)相同,所以第88個(gè)數(shù)是4。從例3看出,周期性規(guī)律有時(shí)并不明顯,要找到它還真得動(dòng)點(diǎn)腦筋。例4 在下面的一串?dāng)?shù)中,從第五個(gè)數(shù)起,每個(gè)數(shù)
51、都是它前面四個(gè)數(shù)之和的個(gè)位數(shù)字。那么在這串?dāng)?shù)中,能否出現(xiàn)相鄰的四個(gè)數(shù)是“2000”?135761939237134分析與解:無(wú)休止地將這串?dāng)?shù)寫下去,顯然不是聰明的做法。按照例3的方法找到一周期,因?yàn)檫@個(gè)周期很長(zhǎng),所以也不是好方法。那么怎么辦呢?仔細(xì)觀察會(huì)發(fā)現(xiàn),這串?dāng)?shù)的前四個(gè)數(shù)都是奇數(shù),按照“每個(gè)數(shù)都是它前面四個(gè)數(shù)之和的個(gè)位數(shù)字”,如果不看具體數(shù),只看數(shù)的奇偶性,那么將這串?dāng)?shù)依次寫出來(lái),得到奇奇奇奇偶奇奇奇奇偶奇可以看出,這串?dāng)?shù)是按照四個(gè)奇數(shù)一個(gè)偶數(shù)的規(guī)律循環(huán)出現(xiàn)的,永遠(yuǎn)不會(huì)出現(xiàn)四個(gè)偶數(shù)連在一起的情況,即不會(huì)出現(xiàn)“2000”。例5 A,B,C,D四個(gè)盒子中依次放有8,6,3,1個(gè)球。第1個(gè)小朋友
52、找到放球最少的盒子,然后從其它盒子中各取一個(gè)球放入這個(gè)盒子;第2個(gè)小朋友也找到放球最少的盒子,然后也從其它盒子中各取一個(gè)球放入這個(gè)盒子當(dāng)100位小朋友放完后,A,B,C,D四個(gè)盒子中各放有幾個(gè)球?分析與解:按照題意,前六位小朋友放過(guò)后,A,B,C,D四個(gè)盒子中的球數(shù)如下表:可以看出,第6人放過(guò)后與第2人放過(guò)后四個(gè)盒子中球的情況相同,所以從第2人放過(guò)后,每經(jīng)過(guò)4人,四個(gè)盒子中球的情況重復(fù)出現(xiàn)一次。(100-1)÷4243,所以第100次后的情況與第4次(314)后的情況相同,A,B,C,D盒中依次有4,6,3,5個(gè)球。 練習(xí)71有一串很長(zhǎng)的珠子,它是按照5顆紅珠、3顆白珠、4
53、顆黃珠、2顆綠珠的順序重復(fù)排列的。問(wèn):第100顆珠子是什么顏色?前200顆珠子中有多少顆紅珠?2將1,2,3,4,除以3的余數(shù)依次排列起來(lái),得到一個(gè)數(shù)列。求這個(gè)數(shù)列前100個(gè)數(shù)的和。3有一串?dāng)?shù),前兩個(gè)數(shù)是9和7,從第三個(gè)數(shù)起,每個(gè)數(shù)是它前面兩個(gè)數(shù)乘積的個(gè)位數(shù)。這串?dāng)?shù)中第100個(gè)數(shù)是幾?前100個(gè)數(shù)之和是多少?4有一列數(shù),第一個(gè)數(shù)是6,以后每一個(gè)數(shù)都是它前面一個(gè)數(shù)與7的和的個(gè)位數(shù)。這列數(shù)中第88個(gè)數(shù)是幾?5小明按13報(bào)數(shù),小紅按14報(bào)數(shù)。兩人以同樣的速度同時(shí)開(kāi)始報(bào)數(shù),當(dāng)兩人都報(bào)了100個(gè)數(shù)時(shí),有多少次兩人報(bào)的數(shù)相同?6A,B,C,D四個(gè)盒子中依次放有9,6,3,0個(gè)小球。第1個(gè)小朋友找到放球最多
54、的盒子,從中拿出3個(gè)球放到其它盒子中各1個(gè)球;第2個(gè)小朋友也找到放球最多的盒子,也從中拿出3個(gè)球放到其它盒子中各1個(gè)球當(dāng)100個(gè)小朋友放完后,A,B,C,D四個(gè)盒子中各放有幾個(gè)球? 第8講 找規(guī)律(二)整數(shù)a與它本身的乘積,即a×a叫做這個(gè)數(shù)的平方,記作a2,即a2a×a;同樣,三個(gè)a的乘積叫做a的三次方,記作a3,即a3a×a×a。一般地,n個(gè)a相乘,叫做a的n次方,記作an,即本講主要講an的個(gè)位數(shù)的變化規(guī)律,以及an除以某數(shù)所得余數(shù)的變化規(guī)律。因?yàn)榉e的個(gè)位數(shù)只與被乘數(shù)的個(gè)位數(shù)和乘數(shù)的個(gè)位數(shù)有關(guān),所以an的個(gè)位數(shù)只與a的個(gè)位數(shù)有關(guān),而a的個(gè)
55、位數(shù)只有0,1,2,9共十種情況,故我們只需討論這十種情況。為了找出一個(gè)整數(shù)a自乘n次后,乘積的個(gè)位數(shù)字的變化規(guī)律,我們列出下頁(yè)的表格,看看a,a2,a3,a4,的個(gè)位數(shù)字各是什么。從表看出,an的個(gè)位數(shù)字的變化規(guī)律可分為三類:(1)當(dāng)a的個(gè)位數(shù)是0,1,5,6時(shí),an的個(gè)位數(shù)仍然是0,1,5,6。(2)當(dāng)a的個(gè)位數(shù)是4,9時(shí),隨著n的增大,an的個(gè)位數(shù)按每?jī)蓚€(gè)數(shù)為一周期循環(huán)出現(xiàn)。其中a的個(gè)位數(shù)是4時(shí),按4,6的順序循環(huán)出現(xiàn);a的個(gè)位數(shù)是9時(shí),按9,1的順序循環(huán)出現(xiàn)。(3)當(dāng)a的個(gè)位數(shù)是2,3,7,8時(shí),隨著n的增大,an的個(gè)位數(shù)按每四個(gè)數(shù)為一周期循環(huán)出現(xiàn)。其中a的個(gè)位數(shù)是2時(shí),按2,4,8,
56、6的順序循環(huán)出現(xiàn);a的個(gè)位數(shù)是3時(shí),按3,9,7,1的順序循環(huán)出現(xiàn);當(dāng)a的個(gè)位數(shù)是7時(shí),按7,9,3,1的順序循環(huán)出現(xiàn);當(dāng)a的個(gè)位數(shù)是8時(shí),按8,4,2,6的順序循環(huán)出現(xiàn)。例1 求67999的個(gè)位數(shù)字。分析與解:因?yàn)?7的個(gè)位數(shù)是7,所以67n的個(gè)位數(shù)隨著n的增大,按7,9,3,1四個(gè)數(shù)的順序循環(huán)出現(xiàn)。999÷42493,所以67999的個(gè)位數(shù)字與73的個(gè)位數(shù)字相同,即67999的個(gè)位數(shù)字是3。例2 求291+3291的個(gè)位數(shù)字。分析與解:因?yàn)?n的個(gè)位數(shù)字按2,4,8,6四個(gè)數(shù)的順序循環(huán)出現(xiàn),91÷4223,所以,291的個(gè)位數(shù)字與23的個(gè)位數(shù)字相同,等于8。類似地,3n的個(gè)位數(shù)字按3,9,7,1四個(gè)數(shù)的順序循環(huán)出現(xiàn),291÷4723,所以3291與33的個(gè)位數(shù)相同,等于7。最后得到291+3291的個(gè)位數(shù)字與8+7的個(gè)位數(shù)字相同,等于5。例3 求28128-2929的個(gè)位數(shù)字。解:由128÷432知,28128的個(gè)位數(shù)與84的個(gè)位數(shù)相同,等于6。由29÷2141知,2929的個(gè)位數(shù)與91的個(gè)位數(shù)相同,等于9。因?yàn)?9,在減法中需向十位借位,所以所求個(gè)位數(shù)字為1697。例4 求下列各除法運(yùn)算所得的余數(shù):(1)7855
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年多元文化教育研究生入學(xué)考試試卷及答案
- 2025年公共衛(wèi)生政策與管理知識(shí)考試題及答案
- 2025年財(cái)務(wù)管理核心知識(shí)考試題及答案
- 標(biāo)書文件-救護(hù)車、車載醫(yī)療設(shè)備公開(kāi)招標(biāo)文件
- 給排水工程施工方案及質(zhì)量保證措施
- 中醫(yī)病例首頁(yè)填寫
- 城市舊區(qū)改造拆遷補(bǔ)償房產(chǎn)購(gòu)買協(xié)議書
- 信息技術(shù)安全采購(gòu)補(bǔ)充協(xié)議范本
- 茶館及茶藝表演權(quán)轉(zhuǎn)讓協(xié)議范本
- 創(chuàng)優(yōu)實(shí)施樣板圖例
- 天津市公安局為留置看護(hù)總隊(duì)招聘警務(wù)輔助人員考試真題2024
- DB13-T 5266-2020 基于巖體基本質(zhì)量BQ分級(jí)法的公路隧道圍巖級(jí)別快速判定技術(shù)要求
- 2025豬藍(lán)耳病防控及凈化指南(第三版)
- 【課件】Unit+8+Section+B+(1a~2b)課件人教版(2024)初中英語(yǔ)七年級(jí)下冊(cè)
- 2025年山西云時(shí)代技術(shù)有限公司校園招聘160人筆試參考題庫(kù)附帶答案詳解
- 交互裝置設(shè)計(jì)課程介紹
- 2025-2030全球及中國(guó)三維激光掃描儀行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 安防監(jiān)控系統(tǒng)維保方案
- 鐵路工務(wù)安全
- 《人工智能:AIGC基礎(chǔ)與應(yīng)用》高職全套教學(xué)課件
- 福建省漳州實(shí)小教育集團(tuán)2025年數(shù)學(xué)三下期末綜合測(cè)試試題含解析
評(píng)論
0/150
提交評(píng)論