




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第四節(jié) 基本積分法 :換元積分法 ;分部積分法 初等函數(shù)求導(dǎo)初等函數(shù)積分一、有理函數(shù)的積分 二、可化為有理函數(shù)的積分舉例有理函數(shù)的積分本節(jié)內(nèi)容: 第四四章 直接積分法 ;一、一、 有理函數(shù)的積分有理函數(shù)的積分)()()(xQxPxR nnnaxaxa110mmmbxbxb110有理函數(shù):nm 時(shí),)(xR為假分式;nm 時(shí),)(xR為真分式有理函數(shù)相除多項(xiàng)式 + 真分 式分解其中部分分式的形式為kkqxpxNxMaxA)(;)(2)04,(2qpkN若干部分分式之和例例1. 將下列真分式分解為部分分式 :;) 1(1) 1 (2xx;653)2(2xxx.)1)(21 (1)3(2xx解解:
2、(1) 用拼湊法22) 1() 1(1xxxx2) 1(1x) 1(1xx2) 1(1x) 1( xx2) 1(1x11xx1) 1( xx) 1( xx(2) 用賦值法6532xxx)3)(2(3xxx2xA3xB原式)2(xA2x233xxx5原式)3(xB3x323xxx6故25x原式36x(3) 混合法)1)(21 (12xx xA2121xCBx原式)21 (xA21x54代入等式兩端分別令1 ,0 xC541215461CB52B51C原式 =x214512112xx四種典型部分分式的積分四種典型部分分式的積分: CaxAln) 1( nCaxnAn1)(1xaxAd. 1xaxA
3、nd)(. 2xqxpxNxMd. 32xqxpxNxMnd)(. 42) 1,04(2nqp變分子為 )2(2pxM2pMN 再分項(xiàng)積分 pxqpxx2)(2例例2. 求.)1)(21 (d2xxx解解: 已知)1)(21 (12xx51x214212xx211xxx21)21 ( d52原式221)1 ( d51xx21d51xxx21ln52)1 (ln512xCxarctan51例例3. 求.d3222xxxx解解: 原式xxxd3223)22(21x32)32d(2122xxxx32ln212xx22)2() 1() 1d(3xxCx21arctan23說明說明: 將有理函數(shù)分解為部
4、分分式進(jìn)行積分雖可行,但不一定簡便 , 因此要注意根據(jù)被積函數(shù)的結(jié)構(gòu)尋求簡便的方法. 例例5. 求求.d)22(222xxxx解解: 原式xxxd)22(22)22(2 xx)22(x1) 1(d2xx222)22()22d(xxxx) 1arctan( x2212xxCxxxd)4)(1(22)4() 1(22xx例例4. 求求.d4555222423xxxxxxIxxxxxId4552243xxxxd455224245)55d(212424xxxx45ln2124xx2arctan21xCxarctan解解:常規(guī)法 例例6. 求求解解: 原式xxd14) 1(2x) 1(2 x211d4x
5、x(見P363 公式21)2arctan2211xx21221 ln21xx21xxCxxxxd12122121xxxxd121221212)(2121xx)d(1xx 2)(2121xx)d(1xx 注意本題技巧注意本題技巧xx21arctan2212Cxxxx1212ln24122)0( x按常規(guī)方法解1d4xx第一步 令)(1224dxcxbxaxx比較系數(shù)定 a , b , c , d . 得) 12)(12(1224xxxxx第二步 化為部分分式 . 即令) 12)(12(111224xxxxx121222xxDxCxxBxA比較系數(shù)定 A , B , C , D .第三步 分項(xiàng)積分
6、 .此解法較繁 !二二 、可化為有理函數(shù)的積分舉例、可化為有理函數(shù)的積分舉例設(shè))cos,(sinxxR表示三角函數(shù)有理式 ,xxxRd)cos,(sin令2tanxt 萬能代換(參考下頁例7)t 的有理函數(shù)的積分1. 三角函數(shù)有理式的積分三角函數(shù)有理式的積分則例例7. 求求.d)cos1 (sinsin1xxxx解解: 令,2tanxt 則222222cossincossin2sinxxxxx222tan1tan2xx212tt22222222cossinsincoscosxxxxx2222tan1tan1xx2211ttxdttd122xxxxd)cos1 (sinsin1 2121tt21
7、2tt)1 (2211ttttd212tttd122121221tt 2tlnC2tan412x2tanxCx2tanln21212sinttx2211costtxttxd12d2例例8. 求求.)0(cossind2222baxbxax解解: 原式xxd2cos1222tanbxa222)(tantand1abxxa)tanarctan(1xbabaC說明說明: 通常求含xxxxcossincos,sin22及的積分時(shí),xttan往往更方便 .的有理式用代換2. 簡單無理函數(shù)的積分簡單無理函數(shù)的積分,d),(xbaxxRn令nbxat,d),(xxRndxcbxa令ndxcbxat被積函數(shù)為
8、簡單根式的有理式 , 可通過根式代換 化為有理函數(shù)的積分. 例如:,d),(xbaxbaxxRmn,pbxat令., 的最小公倍數(shù)為nmp例例11. 求.21d3xx解解: 令,23xu則,23 uxuuxd3d2原式u123uuduuud11) 1(32uuud)111(33221uuu1lnC3223)2( x323x321ln3xC例例12. 求.d3xxx解解: 為去掉被積函數(shù)分母中的根式 , 取根指數(shù) 2 , 3 的最小公倍數(shù) 6 ,6tx 則有原式23tttt d65ttttd)111(626331t221ttt1lnCCxxxx)1(ln6632663令例例13. 求.d11xx
9、xx解解: 令,1xxt則,112tx22) 1(d2dtttx原式原式tt) 1(2tttd) 1(222tttd1222t211lnttCxx12Cxxx1122ln內(nèi)容小結(jié)內(nèi)容小結(jié)1. 可積函數(shù)的特殊類型有理函數(shù)分解多項(xiàng)式及部分分式之和三角函數(shù)有理式萬能代換簡單無理函數(shù)三角代換根式代換2. 特殊類型的積分按上述方法雖然可以積出, 但不一定 要注意綜合使用基本積分法 , 簡便計(jì)算 .簡便 , 思考與練習(xí)思考與練習(xí)如何求下列積分更簡便 ?)0(d. 1662axxaxxxxcossind. 23解解: 1.23233)()(d31xax原式Caxaxa33333ln61Caxaxa33333ln612. 原式xxxxxdcossincossin322xxxcossindxxxdsincos3xxtantandxx3sinsindxtanlnCx2sin121作業(yè)作業(yè)P218 3 , 6 , 8 , 15, 18 , 20 , 22 1.求不定積分解:解:.d)1 (126xxx令,1xt 則,1tx ttxd1d2, 故xxxd)1 (126161t)11 (2tttd)1(2tttd126ttttd)111(224551t331ttCt arctanCxxxx1arctan1315135分母次數(shù)較高,宜使
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度中文期刊采購合同
- 2025至2030中國房屋裝修行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資機(jī)會(huì)報(bào)告
- 2025至2030中國頭孢他美酯膠囊行業(yè)市場運(yùn)行分析及競爭格局與投資發(fā)展報(bào)告
- 2025至2030中國二手車行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 2025-2030薯片產(chǎn)業(yè)規(guī)劃專項(xiàng)研究報(bào)告
- 2025福建路信交通建設(shè)監(jiān)理有限公司招聘13人筆試參考題庫附帶答案詳解析集合
- 2025至2031年中國無管網(wǎng)自動(dòng)滅火裝置行業(yè)投資前景及策略咨詢研究報(bào)告
- 殘疾人技能展示企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力項(xiàng)目商業(yè)計(jì)劃書
- 2025至2031年中國微生物鑒定儀行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國大型風(fēng)冷式冷水機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 《新能源材料概論》 課件 第2章 熱電轉(zhuǎn)換新能源材料
- DBJ51T 008-2015 四川省建筑工業(yè)化混凝土預(yù)制構(gòu)件制作 安裝及質(zhì)量驗(yàn)收規(guī)程
- 剖腹產(chǎn)快速康復(fù)的護(hù)理
- DIP支付下的病案首頁填寫
- 工程五金知識(shí)培訓(xùn)課件
- KCA試題庫完整版
- 2024年新版藥品管理法培訓(xùn)
- 柴油發(fā)電機(jī)組降噪解決方案
- 2022年高中英語學(xué)科教學(xué)計(jì)劃
- DB51T 2845-2021 連續(xù)玄武巖纖維生產(chǎn)原料技術(shù)規(guī)范
- 2025屆湖南省高考化學(xué)第一輪復(fù)習(xí)模擬選擇題-化學(xué)與生活43道(附答案)
評(píng)論
0/150
提交評(píng)論