




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優(yōu)質文檔-傾情為你奉上空間向量與立體幾何知識點歸納總結一知識要點。1. 空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2. 空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數乘運算如下(如圖)。 ;運算律:加法交換律:加法結合律:數乘分配律:運算法則:三角形法則、平行四邊形法則、平行六面體法則3. 共線向量。(1)如果表示空間向量的有向線段所在的直線平行或重合,那么這些向量也叫做共線向量或平行向量,平行于,記作。(2)共線向量定理:空間任意兩個向量、(),/存在實數,
2、使。(3)三點共線:A、B、C三點共線<=> <=>(4)與共線的單位向量為4. 共面向量 (1)定義:一般地,能平移到同一平面內的向量叫做共面向量。說明:空間任意的兩向量都是共面的。(2)共面向量定理:如果兩個向量不共線,與向量共面的條件是存在實數使。(3)四點共面:若A、B、C、P四點共面<=> <=>5. 空間向量基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序實數組,使。若三向量不共面,我們把叫做空間的一個基底,叫做基向量,空間任意三個不共面的向量都可以構成空間的一個基底。推論:設是不共面的四點,則對空間任一點,都存在
3、唯一的三個有序實數,使。6. 空間向量的直角坐標系: (1)空間直角坐標系中的坐標:在空間直角坐標系中,對空間任一點,存在唯一的有序實數組,使,有序實數組叫作向量在空間直角坐標系中的坐標,記作,叫橫坐標,叫縱坐標,叫豎坐標。注:點A(x,y,z)關于x軸的的對稱點為(x,-y,-z),關于xoy平面的對稱點為(x,y,-z).即點關于什么軸/平面對稱,什么坐標不變,其余的分坐標均相反。在y軸上的點設為(0,y,0),在平面yOz中的點設為(0,y,z)(2)若空間的一個基底的三個基向量互相垂直,且長為,這個基底叫單位正交基底,用表示??臻g中任一向量=(x,y,z)(3)空間向量的直角坐標運算律
4、:若,則, , 。若,則。一個向量在直角坐標系中的坐標等于表示這個向量的有向線段的終點的坐標減去起點的坐標。定比分點公式:若,則點P坐標為。推導:設P(x,y,z)則,顯然,當P為AB中點時,三角形重心P坐標為ABC的五心:內心P:內切圓的圓心,角平分線的交點。(單位向量)外心P:外接圓的圓心,中垂線的交點。垂心P:高的交點:(移項,內積為0,則垂直)重心P:中線的交點,三等分點(中位線比)中心:正三角形的所有心的合一。(4)模長公式:若,則,(5)夾角公式:。ABC中<=>A為銳角<=>A為鈍角,鈍角(6)兩點間的距離公式:若,則,或 7. 空間向量的數量積。(1)空
5、間向量的夾角及其表示:已知兩非零向量,在空間任取一點,作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:。(2)向量的模:設,則有向線段的長度叫做向量的長度或模,記作:。(3)向量的數量積:已知向量,則叫做的數量積,記作,即。(4)空間向量數量積的性質:。(5)空間向量數量積運算律:。(交換律)。(分配律)。不滿足乘法結合率:二空間向量與立體幾何1線線平行兩線的方向向量平行1-1線面平行線的方向向量與面的法向量垂直1-2面面平行兩面的法向量平行2線線垂直(共面與異面)兩線的方向向量垂直2-1線面垂直線與面的法向量平行2-2面面垂直兩面的法向量垂直3線線夾角(共面與異面)兩
6、線的方向向量的夾角或夾角的補角,3-1線面夾角:求線面夾角的步驟:先求線的方向向量與面的法向量的夾角,若為銳角角即可,若為鈍角,則取其補角;再求其余角,即是線面的夾角.3-2面面夾角(二面角):若兩面的法向量一進一出,則二面角等于兩法向量的夾角;法向量同進同出,則二面角等于法向量的夾角的補角. 4點面距離 :求點到平面的距離: 在平面上去一點,得向量;; 計算平面的法向量;.4-1線面距離(線面平行):轉化為點面距離4-2面面距離(面面平行):轉化為點面距離【典型例題】1基本運算與基本知識()例1. 已知平行六面體ABCD,化簡下列向量表達式,標出化簡結果的向量。; ; ; 。例2. 對空間任
7、一點和不共線的三點,問滿足向量式: (其中)的四點是否共面? 。例3 已知空間三點A(0,2,3),B(2,1,6),C(1,1,5)。求以向量為一組鄰邊的平行四邊形的面積S;若向量分別與向量垂直,且|,求向量的坐標。2基底法(如何找,轉化為基底運算)3坐標法(如何建立空間直角坐標系,找坐標)4幾何法編號03晚自習測試;17,18題例4. 如圖,在空間四邊形中,求與的夾角的余弦值。說明:由圖形知向量的夾角易出錯,如易錯寫成,切記!例5. 長方體中,為與的交點,為與的交點,又,求長方體的高?!灸M試題】1. 已知空間四邊形,連結,設分別是的中點,化簡下列各表達式,并標出化簡結果向量:(1); (2); (3)。2. 已知平行四邊形ABCD,從平面外一點引向量。(1)求證:四點共面;(2)平面平面。3. 如圖正方體中,求與所成角的余弦。5. 已知平行六面體中,求的長。參考答案1. 解:如圖, (1);(2)。;(3)。2. 解:(1)證明:四邊形是平行四邊形,共面;(2)解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司深秋拓展活動方案
- 公司放松娛樂活動方案
- 公司游玩活動策劃方案
- 公司節(jié)日紀念活動方案
- 公司早會流程策劃方案
- 公司直播間燈光策劃方案
- 公司組織踢毽子策劃方案
- 公司組織慰問活動方案
- 公司花園團建活動方案
- 2025年小學教師資格考試試卷及答案
- 湖北省部分學校2023-2024學年高二下學期期末考試地理試題
- 基于大數據的公路運輸碳排放評估與控制
- 敘事護理學智慧樹知到期末考試答案章節(jié)答案2024年中國人民解放軍海軍軍醫(yī)大學
- 工業(yè)機器人系統操作員國家職業(yè)技能考核標準(2023年版)
- 上海學前教育學院附屬青浦第二實驗幼兒園新生入園登記
- 卡前列素氨丁三醇在產后出血的的應用課件
- 固廢危廢培訓課件
- 水庫安保服務方案
- 一例ANCA相關性血管炎患者的護理查房
- 《外科微創(chuàng)技術》課件
- 如何建立與客戶良好的關系
評論
0/150
提交評論