數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透-精品教育文檔_第1頁
數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透-精品教育文檔_第2頁
數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透-精品教育文檔_第3頁
數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透-精品教育文檔_第4頁
全文預覽已結(jié)束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透在小學數(shù)學課堂中有效滲透數(shù)學思想和方法可以讓學生更深刻地認識數(shù)學原理, 提高數(shù)學學習效率, 形成良好的數(shù)學思維,解決實際問題。 下面闡述教師如何在課堂上有效滲透數(shù)學思想和方法。一、在知識講解過程中滲透數(shù)學思想和方法教師在知識講解過程中不要只講解表面的數(shù)學知識, 讓學生熟練掌握基礎知識的同時, 還要滲透數(shù)學思想和方法, 數(shù)學原理的系統(tǒng)性很強,在基礎知識中也蘊含著豐富的數(shù)學思想和方法,如果教師不適當對學生進行滲透, 學生很難發(fā)現(xiàn)其中的奧妙, 只懂得數(shù)學知識, 而不懂得數(shù)學思想和方法, 學生就難以在數(shù)學領域有好的發(fā)展。比如,“簡單的小數(shù)加、減法”這部分內(nèi)容,教

2、師在講解過程中會告訴學生小數(shù)的加減法和整數(shù)的加減法是類似的, 學生已經(jīng)可以對整數(shù)的加減法進行準確計算了, 對小數(shù)加減法的學習肯定會感到很容易接受。 講解這部分內(nèi)容的時候, 教師無形中就向?qū)W生滲透了“類比”數(shù)學思想, 運用類比思想, 學生可以以最快的速度吸收小數(shù)加減法的知識。 向?qū)W生滲透類比的數(shù)學思想, 學生在以后的學習過程中也能自己進行類比, 聯(lián)系之前已經(jīng)學過的知識,對新知識展開研究。二、在題目講解過程中滲透數(shù)學思想和方法教師在題目講解過程中不要只給學生講解如何做題目是正確的,在讓學生正確掌握解題思路的同時, 還要滲透數(shù)學思想和方法,數(shù)學原理的應用性很強, 在解題過程中也蘊含著豐富的數(shù)學思想和

3、方法, 如果教師在講解題目的時候不適當對學生進行滲透,學生很難舉一反三、靈活運用,只會解答題目,而不懂得數(shù)學思想和方法,學生就難以解答復雜的題目。比如:“因數(shù)和倍數(shù)”這部分內(nèi)容, 由于一個數(shù)的因數(shù)和倍數(shù)不止一種情況, 所以要在題目限制的條件下進行分類討論, 一個長方形的面積是 12,請問長和寬分別是多少,這個問題的答案不止一個,要進行分類討論。分類討論也是數(shù)學思想之一,只有掌握了分類討論思想,學生才能更有條理地解題。三、在歸納小結(jié)過程中滲透數(shù)學思想和方法教師在教學過程中少不了對知識進行歸納總結(jié), 在歸納小結(jié)過程中不要只是簡單地把知識系統(tǒng)起來, 還要滲透數(shù)學思想和方法,數(shù)學原理的聯(lián)系性很強, 在

4、歸納小結(jié)中也蘊含著豐富的數(shù)學思想和方法, 如果教師在進行歸納小結(jié)的時候不適當對學生進行滲透,學生很難對知識有一個全面的認識, 只會從表面上總結(jié)知識,而不懂得數(shù)學思想和方法, 學生就很難在數(shù)學學科上有所造詣。比如,“組合圖形的面積”這部分內(nèi)容,教師要引導學生對求解面積的方法進行歸納總結(jié),什么情況下應該如何求解面積,這部分內(nèi)容用到的數(shù)學思想主要是“化歸”思想,把多變形的面積轉(zhuǎn)化和歸結(jié)成已經(jīng)學過的平行四邊形、正方形和三角形面積,化繁為簡,復雜問題簡單化。給學生滲透了“化歸”思想之后,學生不僅對本節(jié)內(nèi)容學起來更容易, 也會在其他知識的總結(jié)歸納中運用化歸思想,找到學習數(shù)學的簡便方法。四、在拓展延伸過程中

5、滲透數(shù)學思想和方法為了更快地提高學生的數(shù)學能力,很多教師都會在課堂上進行拓展延伸,在拓展延伸過程中不要只是對知識進行拓展延伸,還要滲透數(shù)學思想和方法,數(shù)學原理的延伸性很強,在拓展延伸中也蘊含著豐富的數(shù)學思想和方法,如果教師在進行拓展延伸的時候不適當對學生進行滲透,學生很難在拓展延伸中提高自己的數(shù)學能力, 只會從表面上對知識進行延伸,而不懂得數(shù)學思想和方法,學生就很難真正地提高數(shù)學水平?!皩嶋H問題與方程”這部分內(nèi)容本身體現(xiàn)的就是“方程”的數(shù)學思想, 在拓展延伸過程中教師可以找一些難度比較大的實際應用題, 讓學生利用方程思想解答, 分析數(shù)學問題中變量間的等量關系,構建方程或方程組去分析、轉(zhuǎn)換、解決問題。方程思想在數(shù)學思想中是比較普遍的, 學生只有學好了方程思想才能準確研究數(shù)學中的等量關系。以上內(nèi)容通過知識講解過程、 題目講解過程、歸納小結(jié)過程、拓展延伸過程四個方面介紹了數(shù)學思想和方法在小學數(shù)學課堂中的有效滲透,通過在這四個環(huán)節(jié)中有效滲透數(shù)學思想和方法,讓學生從聽講到解題到小結(jié)到延伸的每個過程都能體悟到數(shù)學思想和方法的重要性, 除了上述講到的類比思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論