




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1QUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYACENTRALUNIVERSITYSURYAMANINAGAR,TRIPURA799130,INDIAMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA,WESTBENGAL700032,INDIAAICTEEMERITUSFELLOWDEBOTOSHINDIATIMESCOM,MITANASIPURIGMAILCOM,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTTHISPAPERINVESTIGATESTHEMULTIRESOLUTIONLEVEL1ANDLEVEL2QUOTIENTBASEDFUSIONOFTHERMALANDVISUALIMAGESINTHEPROPOSEDSYSTEM,THEMETHOD1NAMELY“DECOMPOSETHENQUOTIENTFUSELEVEL1”ANDTHEMETHOD2NAMELY“DECOMPOSERECONSTRUCTTHENQUOTIENTFUSELEVEL2”BOTHWORKONWAVELETTRANSFORMATIONSOFTHEVISUALANDTHERMALFACEIMAGESTHEWAVELETTRANSFORMISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONWITHOUTANYLOSSTHISAPPROACHISBASEDONADEFINITIONOFANILLUMINATIONINVARIANTSIGNATUREIMAGEWHICHENABLESANANALYTICGENERATIONOFTHEIMAGESPACEWITHVARYINGILLUMINATIONTHEQUOTIENTFUSEDIMAGESAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORDIMENSIONREDUCTIONANDTHENTHOSEIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONMLPTHEPERFORMANCESOFBOTHTHEMETHODSHAVEBEENEVALUATEDUSINGOTCBVSANDIRISDATABASESALLTHEDIFFERENTCLASSESHAVEBEENTESTEDSEPARATELY,AMONGTHEMTHEMAXIMUMRECOGNITIONRESULTIS100KEYWORDSDISCRETEWAVELETTRANSFORM,INVERSEDISCRETEWAVELETTRANSFORM,QUOTIENTFUSEDIMAGE,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRONMLP,FACIALRECOGNITION,CLASSIFICATION,OTCBVSANDIRISDATABASE1INTRODUCTIONFACERECOGNITIONISAVITALPROBLEMINCOMPUTERVISIONTHOUGHFACERECOGNITIONSYSTEMSSHOWCONSIDERABLEIMPROVEMENTINSUCCESSIVECOMPETITIONS12,STILLITISCONSIDEREDUNSOLVED3FACERECOGNITIONNEEDSHIGHDEGREEOFACCURACYASITSMOSTAPPLICATIONSAREINPUBLICSECURITY,LAWENFORCEMENTANDCOMMERCE,SUCHASMUGSHOTDATABASEMATCHING,IDENTITYAUTHENTICATIONFORCREDITCARDORDRIVERLICENSE,ACCESSCONTROL,INFORMATIONSECURITYANDINTELLIGENTSURVEILLANCE4THEREAREALOTOFFACTORSLIKE,ILLUMINATIONVARIATION,POSEVARIATION,FACIALEXPRESSIONCHANGESETCWHICHAFFECTTHEFACERECOGNITIONPERFORMANCEAMONGALLTHESE,ILLUMINATIONPROBLEMHASRECEIVEDMUCHATTENTIONINRECENTYEARSQUOTIENTIMAGINGTECHNIQUEISONEOFTHESOLUTIONTOTHISPROBLEMTHISMETHODISSIMPLEANDSIGNIFICANTQUOTIENTIMAGEISANIMAGERATIOBETWEENATESTIMAGEANDALINEARCOMBINATIONOFTHREEIMAGESILLUMINATEDBYNONCOPLANARLIGHTS,DEPENDSONLYONTHEALBEDOINFORMATION,ANDTHEREFOREISILLUMINATIONFREE5THEQUOTIENTIMAGECANBECONSIDEREDASFUSEDQUOTIENTIMAGEASBOTHTHEVISUALANDITSCORRESPONDINGTHERMALIMAGESHAVEBEENUSEDTOGENERATEITTHEPROCESSINGSTEPSOFTHETWOMETHODSUSEDTOGENERATEQUOTIENTIMAGESARESHOWNINTHEFIG1AANDFIG1BINBOTHTHETWOMETHODSFORIMAGEDECOMPOSITIONPURPOSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDFORBOTHTHEVISUALANDTHERMALIMAGESBUTINMETHOD2FORRECONSTRUCTIONPURPOSETHEINVERSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDINMETHOD1,DECOMPOSITIONHASBEENDONEATLEVEL1TOGENERATETHEFUSEDQUOTIENTIMAGE,ALLTHECOEFFICIENTSOFTHEDECOMPOSEDIMAGEHAVEBEENUSEDINCASEOFMETHOD2,DISCRETE2DWAVELETTRANSFORMHASBEENUSEDATLEVEL2TODECOMPOSETHEVISUALANDTHERMALIMAGESBUTTOREGENERATETHEIMAGESONLYAPPROXIMATIONCOEFFICIENTSHAVEBEENUSEDWITHTHENEWRECONSTRUCTEDVISUALANDTHERMALIMAGESTHEQUOTIENTIMAGESHAVEBEENGENERATEDINTERMSOFDESIGNINGAFACIALRECOGNITIONSYSTEMWITHHIGHACCURACYLEVEL,THEMAINCRUCIALPOINTISTHECHOICEOFFEATUREEXTRACTORINTHISCONNECTION,PRINCIPALCOMPONENTANALYSISPCAHASBEENUSEDFORDIMENSIONREDUCTIONPURPOSEPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHEIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG2RECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUES25THEEIGENFACESWHICHARETHESETOFEIGENVECTORSISTHENUSEDTODESCRIBEFACEIMAGES6THESEEIGENFACESARETHENCLASSIFIEDUSINGMULTILAYERPERCEPTRONMLPDIFFERENTEXISTINGILLUMINATIONINVARIANTMETHODSHAVEBEENDISCUSSEDRESEARCHERSHAVEPROPOSEDDIFFERENTSOLUTIONSTOILLUMINATIONPROBLEM,WHICHINCLUDEINVARIANTFEATUREBASEDMETHOD7,3DLINEARILLUMINATIONSUBSPACEMETHOD8,LINEAROBJECTCLASS9,ILLUMINATIONANDPOSEMANIFOLD10,ILLUMINATIONCONES13,HARMONICSUBSPACE17,LAMBERTIANREFLECTANCEANDLINEARSUBSPACE14ANDINDIVIDUALPCACOMBININGTHESYNTHESIZEDIMAGES1516THEORETICALLYTHEILLUMINATIONCONEMETHODILLUSTRATEDTHATFACEIMAGESDUETOVARYINGLIGHTINGDIRECTIONSFORMANILLUMINATIONCONE1INTHISALGORITHM,BOTHSELFSHADOWANDCASTSHADOWWERECONSIDEREDANDITSEXPERIMENTALRESULTSOUTPERFORMEDMOSTEXISTINGMETHODSRAMAMOORTHI1719ANDBASRI2021INDEPENDENTLYDEVELOPEDTHESPHERICALHARMONICREPRESENTATIONTHISORIGINALREPRESENTATIONEXPLAINEDWHYTHEIMAGESOFANOBJECTUNDERDIFFERENTLIGHTINGCONDITIONSCANBEDESCRIBEDBYLOWDIMENSIONALSUBSPACEINSOMEPREVIOUSEMPIRICALEXPERIMENTS2324AMONGALLTHESEALGORITHMSTHEQUOTIENTIMAGEMETHODISSIMPLEANDPRACTICALLYUSEFULALSOQUOTIENTIMAGEBYSHASHUAANDRIKLINRAVIVISMAINLYDESIGNEDFORDEALINGWITHILLUMINATIONCHANGESINFACERECOGNITION262728JACOBSETAL30INTRODUCEDANOTHERCONCEPTOFQUOTIENTIMAGE,WHICHISTHERATIOOFTWOIMAGESJACOBSSMETHODCONSIDERSTHELAMBERTIANMODELWITHOUTSHADOWANDASSUMESTHESURFACEOFTHEOBJECTISSMOOTH5RETINEX,WHICHISACOMBINATIONOFTHEWORDSRETINAANDCORTEX,ISANALGORITHMTOMODELTHEHUMANVISUALSYSTEM22THOUGHITSORIGINALPURPOSEISFORCOLORCONSTANCY,BUTPERFORMSWELLASACONTRASTENHANCEMENTALGORITHMTOOAFAMOUSALGORITHMCALLEDFRANKLEMCCANNVARIATIONHASBEENINTRODUCEDBYMCCANNANDFRANKLE33ANDTHISALGORITHMWORKSBYOPERATINGONTHEIMAGEPIXELSINTHELOGDOMAINTHISINVOLVESFOURBASICSTEPSRATIO,PRODUCT,RESETANDAVERAGE29INTHISAPPROACHTHEMAINCONTRIBUTIONISTHEGENERATIONOFFUSEDQUOTIENTIMAGESI/JFROMBOTHTHECOEFFICIENTSOFVISUALIANDTHERMALJIMAGESINTHISPAPER,FIRSTTIMETHEAUTHORSHAVECONTRIBUTEDTHEQUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONTHEPAPERISORGANIZEDASFOLLOWSSYSTEMOVERVIEWHASBEENGIVENINSECTION2WHICHINCLUDESTHEDESCRIPTIONOFVISUALANDTHERMALFACEIMAGES,MULTIRESOLUTIONANALYSIS,THEIMAGEDECOMPOSITIONANDRECONSTRUCTIONPROCESS,QUOTIENTIMAGINGMETHOD,PRINCIPALCOMPONENTANALYSISPCAANDARTIFICIALNEURALNETWORKSECTION3SHOWSANDANALYSESTHEEXPERIMENTALRESULTSUSINGOTCBVSANDIRISDATABASESTHECOMPARISONBETWEENDIFFERENTQUOTIENTIMAGINGMETHODSARESHOWNINSECTION4ANDFINALLYTHECONCLUSIONISMADEINSECTION52SYSTEMOVERVIEWHERE,ATECHNIQUEFORHUMANFACERECOGNITIONUSINGQUOTIENTIMAGESHASBEENPRESENTTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1AFORMETHOD1ANDINFIG1BFORMETHOD2ALLTHEPROCESSINGSTEPSTOGENERATEQUOTIENTIMAGESUSEDINTWOMETHODSARESHOWNINTHECORRESPONDINGBLOCKDIAGRAMSINCASEOFMETHOD1INFIRSTSTEPSINGLELEVELDECOMPOSITIONHASBEENDONEFORBOTHTHEVISUALANDTHERMALIMAGESQUOTIENTIMAGESAREGENERATEDFROMALLTHECOEFFICIENTSAPPROXIMATIONANDDETAILSCOEFFICIENTSOFDECOMPOSEDVISUALANDTHERMALIMAGESMETHOD2ISSLIGHTLYDIFFERENTFROMMETHOD1INTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVEL2HASBEENDONEUSINGDAUBECHIESWAVELETTHEREASONBEHINDUSINGLEVEL2DECOMPOSITIONISTHATTHEHIGHERTHEDECOMPOSITIONLEVELSARETHEMOREADVANTAGEOUSBECAUSETHENUMBEROFHIGHERANDLOWERFREQUENCYSUBBANDSWILLINCREASEINTHISCONNECTIONTHESIZEOFTHEIMAGEWILLDECREASEANDTHUSTHEPROCESSINGSPEEDWILLINCREASE38THENTHEIMAGESARERECONSTRUCTEDFROMTHECORRESPONDINGAPPROXIMATIONCOEFFICIENTSINCASEOFBOTHVISUALANDTHERMALIMAGESTHENQUOTIENTIMAGESAREGENERATEDWITHTHESECOEFFICIENTSTHESETRANSFORMEDIMAGESARESEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEPCAISCOMPUTEDUSINGTRAININGIMAGESALLTHETRAININGANDTESTINGIMAGESAREPROJECTEDINTOTHECREATEDEIGENSPACEANDNAMEDASQUOTIENTFUSEDEIGENFACESONCETHESECONVERSIONSAREDONETHENEXTTASKISTOUSEMULTILAYERPERCEPTRONMLPTOCLASSIFYTHEMAMULTILAYERFEEDFORWARDNETWORKISUSEDFORCLASSIFICATION21MULTIRESOLUTIONANALYSISINCOMPUTERVISION,ITISDIFFICULTTOANALYZETHEINFORMATIONCONTENTOFANIMAGEDIRECTLYFROMTHEGRAYLEVELINTENSITYOFTHEIMAGEPIXELSINDEED,THISVALUEDEPENDSUPONTHELIGHTINGCONDITIONSGENERALLY,THESTRUCTURESWEWANTTORECOGNIZEHAVEVERYDIFFERENTSIZESHENCE,ITISNOTPOSSIBLETODEFINEAPRIORIANOPTIMALRESOLUTIONFORANALYZINGIMAGESFUSEDQUOTIENTVISUALIMAGEDECOMPOSEDVISUALIMAGEWITHLEVEL1DWTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG3FIG1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREFORAMETHOD1ANDBMETHOD2WAVELETDECOMPOSITIONISTHEMOSTWIDELYUSEDMULTIRESOLUTIONTECHNIQUEINIMAGEPROCESSING34INTHISWORK,2DDISCRETEWAVELETTRANSFORMHASBEENUSEDTOEXTRACTMULTIPLESUBBANDFACEIMAGESTHESESUBBANDIMAGESCONTAINAPPROXIMATIONCOEFFICIENTSMATRIXANDDETAILSCOEFFICIENTSMATRICESLIKEHORIZONTAL,VERTICALANDDIAGONALCOEFFICIENTSOFFACESATVARIOUSSCALESONELEVELWAVELETDECOMPOSITIONOFAFACEIMAGEISSHOWNINFIG2FIG2SAMPLEONELEVELWAVELETDECOMPOSEDIMAGEINFIG2,FORBOTHTHEMETHODSA1ISTHEAPPROXIMATIONCOEFFICIENT,V1,H1ANDD1ARETHEVERTICAL,HORIZONTALANDDIAGONALDETAILSCOEFFICIENTSRESPECTIVELYSINGLELEVELDECOMPOSITIONISUSEDINBOTHVISUALANDTHERMALIMAGESFORMETHOD1AN80100PIXELSIMAGEISTAKENASINPUTANDAFTERDECOMPOSITIONFOUR4050PIXELSRESOLUTIONSUBBANDIMAGESA1,H1,V1ANDD1AREOBTAINEDINCASEOFMETHOD2,BOTHTHEINPUTIMAGESVISUALANDTHERMALAREOFSIZE80100AFTERSINGLELEVELDECOMPOSITION,ALLTHEGENERATEDCOEFFICIENTSA1,H1,V1ANDD1AREOFSIZE4050AGAINDECOMPOSITIONATLEVEL2HASBEENAPPLIEDONLYINAPPROXIMATIONCOEFFICIENTA1ANDAFTERTHAT,USINGONLYAPPROXIMATIONCOEFFICIENT,GETTINGAFTERLEVEL2DECOMPOSITION,THEQUOTIENTIMAGESOFSIZE4050HASBEENGENERATED22DAUBECHIESWAVELETTRANSFORMINTHISWORKDAUBECHIESDB1WAVELETHASBEENUSEDTODECOMPOSETHEIMAGESASWELLASTORECONSTRUCTTHEIMAGESALSODAUBECHIESDB1WAVELETISTHESAMEASHAARWAVELETSOTHEDISCUSSIONOFTHEHAARWAVELETISESSENTIALTOUNDERSTANDTHECONCEPTOFDAUBECHIESDB1WAVELETINMATHEMATICS,THEHAARWAVELETISACERTAINSEQUENCEOFFUNCTIONSTHISSEQUENCEWASPROPOSEDIN1909BYALFRDHAARHAARUSEDTHESEFUNCTIONSTOGIVEANEXAMPLEOFACOUNTABLEORTHONORMALSYSTEMFORTHESPACEOFSQUAREINTEGRABLEFUNCTIONSONTHEREALLINE18THEHAARWAVELETSMOTHERWAVELETFUNCTIONTCANBEDESCRIBEDAS101/2,11/21,0TTTOTHERWISE1ANDITSSCALINGFUNCTIONTCANBEDESCRIBEDAS101,0TTOTHERWISE2DAUBECHIESWAVELETTRANSFORMHASBEENUSEDINTHISWORKDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSA1V1H1D1IJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG4DEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTSCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHE2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION3ANDEQUATION4CA,CH,CV,CDDWT2X,WNAME3CA,CH,CV,CDDWT2X,LO_D,HI_D4INEQ3,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONINTHISWORKDB1HASBEENUSEDINCASEOFWNAMEEQ4LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG3DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS373839CONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTWEHAVERECONSTRUCTEDTHEIMAGESBASEDONTHEAPPROXIMATIONCOEFFICIENTMATRIXCAFINALLYTHERECONSTRUCTEDIMAGEISUSEDASTHEINPUTTOPCAFORDIMENSIONREDUCTIONTHE2DIMENSIONALINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION5ANDEQUATION6XIDWT2CA,CH,CV,CD,WNAME5XIDWT2CA,CH,CV,CD,LO_R,HI_R6INVERSEDISCRETEWAVELETTRANSFORMIDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYINTHEFIG4WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGERESPECTIVELYTHEABOVECONCEPTSOFDISCRETEWAVELETTRANSFORMDWTFUNCTIONANDINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONHAVEBEENUSEDFROMWAVELETTOOLBOXOFMATLAB7FIG3STEPSFORDECOMPOSITIONOFANIMAGEFORMETHOD1ANDMETHOD2FIG4STEPSFORRECONSTRUCTIONOFANIMAGEFORMETHOD223THEQUOTIENTFUSEDIMAGEOFTHERMALANDVISUALIMAGEIFTWOOBJECTSAREAANDB,WEDEFINETHEQUOTIENTIMAGEQBYTHERATIOOFTHEIRALBEDOFUNCTIONSAANDBCLEARLY,QISILLUMINATIONINVARIANTINTHEABSENCEOFANYDIRECTACCESSTOTHEALBEDOFUNCTIONS,ITHASBEENSHOWNTHATQCANNEVERTHELESSBERECOVERED,ANALYTICALLY,GIVENACOLUMNSCAJO_DI_D11ROWSO_DI_D22COLUMNSCAJ1CHJ1O_DI_D22COLUMNSCOLUMNSCVJ1HORIZONTALVERTICALCDROWSHORIZONTALDIAGONALAJ1ROWS1ROWSI_RO_RKEEPVERTICAL2HO_R2COLUMNSCOLUMNSCOLUMNSCOLUMNS22I_RO_RI_RCAJ1CHJ1CVJ1CDJ1WHERE,21O_RI_RUPSAMPLECOLUMNSINSERTZEROSATODDINDEXEDCOLUMNSUPSAMPLEROWSINSERTZEROSATODDINDEXEDROWSRECONSTRUCTIONLOWPASSFILTERDECOMPOSITIONHIGHPASSFILTERIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG5BOOTSTRAPSETOFIMAGESONCEQISRECOVERED,THEENTIREIMAGESPACEUNDERVARYINGLIGHTINGCONDITIONSOFOBJECTACANBEGENERATEDBYQANDTHREEIMAGESOFOBJECTBTHEDETAILSAREGIVENBELOWLET,STARTWITHTHECASEN1,IE,THEREISASINGLEOBJECT2IMAGESINTHEBOOTSTRAPSETLETTHEALBEDOFUNCTIONOFTHATOBJECTABEDENOTEDBYA,ANDLETTHETWOIMAGESBEDENOTEDBYA1,A2THEREFORE,AJANTSJ,WHERE,J1,2LETYBEANOTHEROBJECTOFTHECLASSWITHALBEDOYANDLETYSBEANIMAGEOFYILLUMINATEDBYSOMELIGHTINGCONDITIONS,IE,YSYNTSTHEQUOTIENTIMAGEQYOFOBJECTYAGAINSTOBJECTAISDEFINEDBY,YYAUVUVUVQ7WHEREU,VRANGEOVERTHEIMAGETHUS,THEIMAGEQYDEPENDSONLYONTHERELATIVESURFACETEXTUREINFORMATION,ANDTHUSISINDEPENDENTOFILLUMINATION40THEQUOTIENTIMAGEUSEDINTHISEXPERIMENTISTHEQUOTIENTOFTHEVISUALANDTHERMALIMAGEOFANOBJECTLET,THEVISUALIMAGEBEIANDTHETHERMALIMAGEBEJ,THENWECANCONSIDERTHEQUOTIENTIMAGECASFI/FJTHEABOVEMENTIONEDQUOTIENTIMAGINGTECHNIQUEISSAMEFORBOTHTHEMETHODSMETHOD1ANDMETHOD2BUTFIANDFJAREDIFFERENTFORMETHOD1ANDMETHOD2FORMETHOD1,FIRSTBOTHTHEVISUALANDTHERMALIMAGESHAVEBEENDECOMPOSEDATLEVEL1THEQUOTIENTIMAGESHAVEBEENGENERATEDUSINGALLTHEFOURCOEFFICIENTSOFTHEDECOMPOSEDIMAGESAPPROXIMATIONCOEFFICIENTANDDETAILSCOEFFICIENTSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,DIAGONALINCASEOFMETHOD2,FIRSTTHEVISUALANDTHERMALIMAGESAREDECOMPOSEDATLEVEL2ANDAFTERTHATBOTHTHEIMAGESARERECONSTRUCTEDUSINGTHEAPPROXIMATECOEFFICIENTSTHESEIMAGESAREDECOMPOSEDANDRECONSTRUCTEDUSINGWAVELETDECOMPOSITIONANDRECONSTRUCTIONFUNCTIONFINALLYTHEQUOTIENTIMAGEISGENERATEDFROMBOTHTHERECONSTRUCTEDVISUALANDTHERMALFUNCTIONS24IMAGEFUSIONRULESATTHETIMEOFGENERATINGFUSEDIMAGESOFCOEFFICIENTSAPPROXIMATEANDDETAILS,THEABSOLUTEMAXIMUMOFTHERMALANDVISUALIMAGESWASSELECTEDTHEFUSIONMETHODUSEDTOGENERATEFUSEDIMAGEOFWAVELETTOOLBOXISPRESENTINTHEEQ8DABSTABSVCTDVD8WHERE,DISTHEABSOLUTEMAXIMUMMATRIXOFTTHERMALIMAGEANDVVISUALIMAGE,ABSTANDABSVARETHEABSOLUTEMATRICESOFTANDVANDCISTHEGENERATEDFUSEDIMAGEOFTANDVNOWATTHETIMETOFINDTHEABSOLUTEVALUEOFCORRESPONDINGTHERMALANDVISUALCOEFFICIENTSITWILLCALCULATETHEINTENSITYOFTHEEACHPIXELINCASEOFEQUATION8,ITWILLCHECKTHAT,XYXYTB,THENFORTHEFUSEDIMAGEOFCOEFFICIENTITWILLDOTHEFOLLOWINGOPERATIONGIVENINEQ9XYXYXYFTV9WHEREFXYISTHEPIXELVALUEOFTHEFUSEDIMAGECANDTHEMETHODSHOWNINEQ9ISTHEPROCESSTOCALCULATETHEPIXELVALUEFORFUSEDIMAGEOFTANDV25COMPARISONBETWEENQIANDSQIINTHISSECTION,ACOMPARISONANALYSISOFQUOTIENTIMAGEQIANDSELFQUOTIENTIMAGESQIHASBEENPRESENTEDACCORDINGTOTHECONCEPTPROPOSEDBYHAITAOWANG,STANZLIANDYANGSHENGWANG25SQIISDEFINEDASTHERATIOOFTHEINPUTIMAGEANDITSSMOOTHVERSIONSTHESELFQUOTIENTIMAGEQOFIMAGEICANBEEXPRESSEDASIIQIFI10WHEREISTHESMOOTHEDVERSIONOFIFISTHESMOOTHINGKERNELWECANCONSIDERTHESQIASONEKINDOFQIWHICHISDERIVEDFROMTHESAMEIMAGEIITSELFTHEDEFINITIONOFTHEQUOTIENTIMAGEPROVIDESANINVARIANTREPRESENTATIONOFFACEIMAGESUNDERDIFFERENTLIGHTINGCONDITIONS26PRINCIPALCOMPONENTANALYSISTHEPRINCIPALCOMPONENTANALYSISPCA41,42,43USESTHEENTIREIMAGETOGENERATEASETOFFEATURESANDDOESNOTREQUIRETHELOCATIONOFINDIVIDUALFEATUREPOINTSWITHINTHEIMAGEWEHAVEIMPLEMENTEDTHEPCATRANSFORMASAREDUCEDFEATUREEXTRACTORINOURFACERECOGNITIONSYSTEMHERE,EACHOFTHEQUOTIENTFUSEDFACEIMAGESAREPROJECTEDINTOTHEEIGENSPACECREATEDBYTHEEIGENVECTORSOFTHECOVARIANCEMATRIXOFALLTHETRAININGIMAGESREPRESENTEDASCOLUMNVECTORHERE,WEHAVETAKENTHENUMBEROFEIGENVECTORSINTHEEIGENSPACEAS40,BECAUSEEIGENVALUESFOROTHEREIGENVECTORSARENEGLIGIBLEINCOMPARISONTOTHELARGESTEIGENVALUES44454627ANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT“INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG6HISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS471225353EXPERIMENTSANDDISCUSSIONEXPERIMENTSAREPERFORMEDTOEVALUATEQUOTIENTIMAGEQIFORFACERECOGNITION,USINGIRISDATABASETHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYASTHEBOTHRECONSTRUCTEDVISUALANDTHERMALIMAGESHASBEENUSEDTOGENERATEQUOTIENTFUSEDIMAGES,SOFIRSTOFALLORIGINALIMAGESARECROPPEDMANUALLY31OTCBVSDATABASETHEEXPERIMENTSWEREPERFORMEDONTHEFACEDATABASEWHICHISOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSBENCHMARKDATABASECONTAININGASETOFTHERMALANDVISUALFACEIMAGESTHISISAPUBLICLYAVAILABLEBENCHMARKDATASETFORTESTINGANDEVALUATINGNOVELANDSTATEOFTHEARTCOMPUTERVISIONALGORITHMSTHEBENCHMARKCONTAINSVIDEOSANDIMAGESRECORDEDINANDBEYONDTHEVISIBLESPECTRUMITCONTAINSDIFFERENTSETSOFDATALIKEOSUTHERMALPEDESTRIANDATABASE,IRISTHERMAL/VISIBLEFACEDATABASE,OSUCOLORTHERMALDATABASE,TERRAVICFACIALIRDATABASE,TERRAVICWEAPONIRDATABASEANDCBSRNIRFACEDATASETAMONGALLOFTHESEDIFFERENTDATASETS,MAINLY,VISUALIMAGESFROMIRISTHERMAL/VISIBLEFACEDATASETHAVEBEENUSEDINTHISDATASET,THEREARE2000IMAGESOFVISUALAND2000THERMALIMAGESOF16DIFFERENTPERSONSINCASEOF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國甲板設(shè)備行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 儲運罐區(qū)培訓(xùn)課件
- 安全培訓(xùn)課件及教案
- 教育技術(shù)在全球教育發(fā)展中的角色與影響
- 教育數(shù)據(jù)安全與隱私保護(hù)的倫理框架構(gòu)建
- 教育技術(shù)創(chuàng)新在實驗室建設(shè)中的價值體現(xiàn)
- 教育變革背景下的虛擬現(xiàn)實教育財務(wù)策略探討
- 教育技術(shù)創(chuàng)新與VR課堂實踐研究報告
- 培養(yǎng)未來創(chuàng)意人才美術(shù)項目化教學(xué)的教育理念
- 抖音商戶直播用戶畫像更新與分析制度
- 鐵路營業(yè)線安全管理辦法
- 酒類銷售用人勞務(wù)合同
- 2025老年教育政策環(huán)境分析及教學(xué)模式創(chuàng)新路徑研究報告
- 2025年中國伺服電纜行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 【大數(shù)跨境】全球移動電源市場洞察報告
- 勝動燃?xì)獍l(fā)電機組基本構(gòu)造與工作原理課件
- 七年級數(shù)學(xué)下冊一元一次不等式組說課稿人教新課標(biāo)版
- 校長專業(yè)水平測試題
- 腹腔鏡膽囊切除術(shù)后護(hù)理查房
- 配電架空線路驗收規(guī)范表
- 壓力分散型錨索張拉方案
評論
0/150
提交評論