九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié).doc_第1頁(yè)
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié).doc_第2頁(yè)
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié).doc_第3頁(yè)
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié).doc_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一章證明(二)1.等腰三角形的“三線合一”:頂角平分線、底邊上的中線、底邊上的高互相重合。2.等邊三角形是特殊的等腰三角形,作一條等邊三角形的三線合一線,將等邊三角形分成兩個(gè)全等的直角三角形,其中一個(gè)銳角等于30,這它所對(duì)的直角邊必然等于斜邊的一半。有一個(gè)角等于60的的等腰三角形是等邊三角形。如果知道一個(gè)三角形為直角三角形首先要想的定理有:勾股定理:a 2+b 2=c 2(注意區(qū)分斜邊與直角邊);在直角三角形中,如有一個(gè)內(nèi)角等于30,那么它所對(duì)的直角邊等于斜邊的一半;在直角三角形中,斜邊上的中線等于斜邊的一半。3.垂直平分線是垂直于一條線段并且平分這條線段的直線。,線段垂直平分線上的點(diǎn)到這一條線段兩個(gè)端點(diǎn)距離相等。線段垂直平分線逆定理:到一條線段兩端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。三角形的中位線平行于第三邊,并且等于第三邊的一半。夾在兩條平行線間的平行線段相等。4.三角形的三邊的垂直平分線交于一點(diǎn),并且這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。角平分線上的點(diǎn)到角兩邊的距離相等。角平分線逆定理:在角內(nèi)部的,如果一點(diǎn)到角兩邊的距離相等,則它在該角的平分線上。角平分線是到角的兩邊距離相等的所有點(diǎn)的集合。三角形三條角平分線交于一點(diǎn),并且交點(diǎn)到三邊距離相等,交點(diǎn)即為三角形的內(nèi)心。第二章一元二次方程1.只含有一個(gè)未知數(shù)的整式方程,且都可以化為ax2+bx+c=0(a、b、c為常數(shù),a0)的形式,這樣的方程叫一元二次方程。把a(bǔ)x2+bx+c=0(a、b、c為常數(shù),a0)稱(chēng)為一元二次方程的一般形式,a為二次項(xiàng)系數(shù);b為一次項(xiàng)系數(shù);c為常數(shù)項(xiàng)。解一元二次方程的方法:配方法公式法(注意在找abc 時(shí)須先把方程化為一般形式)分解因式法把方程的一邊變成0,另一邊變成兩個(gè)一次因式的乘積來(lái)求解。2.根與系數(shù)的關(guān)系:當(dāng)b2-4ac0時(shí),方程有兩個(gè)不等的實(shí)數(shù)根;當(dāng)b2-4ac=0 時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)b2-4ac0時(shí),方程無(wú)實(shí)數(shù)根。如果一元二次方程ax2+bx+c=0的兩根分別為x1、x2,則有:x1+x2=-b/a;x1x2=c/a。第5章 反比例函數(shù)1.反比例函數(shù)的概念:一般地,y=k/x(k為常數(shù),k0)叫做反比例函數(shù),即y是x的反比例函數(shù)。(x為自變量,y為因變量,其中x不能為零)。判斷兩個(gè)變量是否是反比例函數(shù)關(guān)系有兩種方法:按照反比例函數(shù)的定義判斷;看兩個(gè)變量的乘積是否為定值。(通常第二種方法更適用);反比例函數(shù)的圖象由兩條曲線組成,叫做雙曲線。反比例函數(shù)性質(zhì):當(dāng)k0時(shí),雙曲線的兩支分別位于一、三象限;在每個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k0)或向左(h0)或向下(k0拋物線與x軸有2個(gè)交點(diǎn);b24ac=0拋物線與x軸有1個(gè)交點(diǎn);b24ac0拋物線與x軸有0個(gè)交點(diǎn)(無(wú)交點(diǎn));當(dāng)b24ac0時(shí),設(shè)拋物線與x軸的兩個(gè)交點(diǎn)為A、B,則這兩個(gè)點(diǎn)之間的距離: 。第三章圓1.圓是平面內(nèi)到定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的集合。其中定點(diǎn)叫做圓心,定長(zhǎng)叫做圓的半徑,圓心定圓的位置,半徑定圓的大小,圓心和半徑確定的圓叫做定圓。對(duì)圓的定義的理解:圓是一條封閉曲線,不是圓面;圓由兩個(gè)條件唯一確定:一是圓心(即定點(diǎn)),二是半徑(即定長(zhǎng))。2.點(diǎn)與圓的位置關(guān)系及其數(shù)量特征:如果圓的半徑為r,點(diǎn)到圓心的距離為d,則點(diǎn)在圓上d=r;點(diǎn)在圓內(nèi)dr;點(diǎn)在圓外dr。證明若干個(gè)點(diǎn)共圓,就是證明這幾個(gè)點(diǎn)與一個(gè)定點(diǎn)的距離相等。3.與圓相關(guān)的概念:弦和直徑。弦:連接圓上任意兩點(diǎn)的線段叫做弦。直徑:經(jīng)過(guò)圓心的弦叫做直徑。弧、半圓、優(yōu)弧、劣弧?;。簣A上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧,用符號(hào)“”表示,以CD為端點(diǎn)的弧記為“ ”,讀作“圓弧CD”或“弧CD”。半圓:直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧叫做半圓。優(yōu)弧:大于半圓的弧叫做優(yōu)弧。劣弧:小于半圓的弧叫做劣弧。(為了區(qū)別優(yōu)弧和劣弧,優(yōu)弧用三個(gè)字母表示。)弓形:弦及所對(duì)的弧組成的圖形叫做弓形。同心圓:圓心相同,半徑不等的兩個(gè)圓叫做同心圓。等圓:能夠完全重合的兩個(gè)圓叫做等圓,半徑相等的兩個(gè)圓是等圓。等?。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。圓心角:頂點(diǎn)在圓心的角叫做圓心角。弦心距:從圓心到弦的距離叫做弦心距。4.圓是軸對(duì)稱(chēng)圖形,直徑所在的直線是它的對(duì)稱(chēng)軸,圓有無(wú)數(shù)條對(duì)稱(chēng)軸。3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。說(shuō)明:根據(jù)垂徑定理與推論可知對(duì)于一個(gè)圓和一條直線來(lái)說(shuō),如果具備:過(guò)圓心;垂直于弦;平分弦;平分弦所對(duì)的優(yōu)弧;平分弦所對(duì)的劣弧。5.定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等、所對(duì)的弦相等、所對(duì)的弦心距相等。推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。6.1的弧的概念:把頂點(diǎn)在圓心的周角等分成360份時(shí),每一份的角都是1的圓心角,相應(yīng)的整個(gè)圓也被等分成360 份,每一份同樣的弧叫1弧。圓心角的度數(shù)和它所對(duì)的弧的度數(shù)相等。圓周角的定義:頂點(diǎn)在圓上,并且兩邊都與圓相交的角,叫做圓周角。圓周角定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。推論1: 同弧或等弧所對(duì)的圓周角相等;反之,在同圓或等圓中,相等圓周角所對(duì)的弧也相等;推論2:半圓或直徑所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是直徑;7.確定圓的條件:理解確定一個(gè)圓必須的具備兩個(gè)條件:圓心和半徑,圓心決定圓的位置,半徑?jīng)Q定圓的大小。經(jīng)過(guò)一點(diǎn)可以作無(wú)數(shù)個(gè)圓,經(jīng)過(guò)兩點(diǎn)也可以作無(wú)數(shù)個(gè)圓,其圓心在這個(gè)兩點(diǎn)線段的垂直平分線上。經(jīng)過(guò)三點(diǎn)作圓要分兩種情況:(1)經(jīng)過(guò)同一直線上的三點(diǎn)不能作圓。(2)經(jīng)過(guò)不在同一直線上的三點(diǎn),能且僅能作一個(gè)圓。定理:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。8.三角形的外接圓、三角形的外心、圓的內(nèi)接三角形的概念:(1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過(guò)一個(gè)三角形三個(gè)頂點(diǎn)的圓叫做這個(gè)三角形的外接圓,這個(gè)三角形叫做圓的內(nèi)接三角形。(2)三角形的外心:三角形外接圓的圓心叫做這個(gè)三角形的外心。(3)三角形的外心的性質(zhì):三角形外心到三頂點(diǎn)的距離相等。9.直線和圓相交、相切相離的定義:(1)相交:直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線。(2)相切:直線和圓有惟一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,惟一的公共點(diǎn)做切點(diǎn)。(3)相離:直線和圓沒(méi)有公共點(diǎn)時(shí),叫做直線和圓相離。10.直線與圓的位置關(guān)系的數(shù)量特征:設(shè)O的半徑為r,圓心O到直線的距離為d;dr直線L和O相交。d=r直線L和O相切。dr直線L和O相離。11.切線的總判定定理:經(jīng)過(guò)半徑的外端并且垂直于這個(gè)條半徑的直線是圓的切線。切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑。推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。分析性質(zhì)定理及兩個(gè)推論的條件和結(jié)論間的關(guān)系,可得如下結(jié)論:如果一條直線具備下列三個(gè)條件中的任意兩個(gè),就可推出第三個(gè)。垂直于切線;過(guò)切點(diǎn);過(guò)圓心。12.三角形的內(nèi)切圓、內(nèi)心、圓的外切三角形的概念。和三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓的外切三角形。13.三角形內(nèi)心的性質(zhì):(1)三角形的內(nèi)心到三邊的距離相等。(2)過(guò)三角形頂點(diǎn)和內(nèi)心的射線平分三角形的內(nèi)角。由此性質(zhì)引出一條重要的輔助線: 連接內(nèi)心和三角形的頂點(diǎn),該線平分三角形的這個(gè)內(nèi)角。14.外離、外切、相交、內(nèi)切、內(nèi)含(包括同心圓)這五種位置關(guān)系的定義。(1)外離: 兩個(gè)圓沒(méi)有公共點(diǎn),并且每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓外離。(2)外切: 兩個(gè)圓有惟一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí), 叫做這兩個(gè)圓外切。這個(gè)惟一的公共點(diǎn)叫做切點(diǎn)。(3)相交: 兩個(gè)圓有兩個(gè)公共點(diǎn),此時(shí)叫做這個(gè)兩個(gè)圓相交。(4)內(nèi)切: 兩個(gè)圓有惟一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,一個(gè)圓上的都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)切。這個(gè)惟一的公共點(diǎn)叫做切點(diǎn)。(5)內(nèi)含: 兩個(gè)圓沒(méi)有公共點(diǎn), 并且一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)含。兩圓同心是兩圓內(nèi)的一個(gè)特例。兩圓位置關(guān)系的性質(zhì)與判定:(1)兩圓外離dR+r;(2)兩圓外切d=R+r;(3)兩圓相交R-rdR+r(Rr);(4)兩圓內(nèi)切d=R-r(Rr);(5)兩圓內(nèi)含dr)。15.相切兩圓的性質(zhì):如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。16.相交兩圓的性質(zhì):相交兩圓的連心線垂直平分公共弦。17.圓周長(zhǎng)公式:圓周長(zhǎng)C=2R(R表示圓的半徑)?;¢L(zhǎng)公式:2nR/360(R表示圓的半徑,n表示弧所對(duì)的圓心角的度數(shù))。扇形定義:一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形。弓形定義:由弦及其所對(duì)的弧組成的圖形叫做弓形。弓形弧的中點(diǎn)到弦的距離叫做弓形高。圓的面積公式。圓的面積S=R 2(R表示圓的半徑)。扇形的面積公式:扇形的面積=nR2/360(R表示圓的半徑,n表示弧所對(duì)的圓心角的度數(shù))。弓形的面積公式。18.圓錐可以看作是一個(gè)直角三角形繞著直角邊所在的直線旋轉(zhuǎn)一周而形成的圖形,另一條直角邊旋轉(zhuǎn)而成的面叫做圓錐的底面,斜邊旋轉(zhuǎn)而成的面叫做圓錐的側(cè)面。圓錐的側(cè)面展開(kāi)圖與側(cè)面積計(jì)算:圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,這個(gè)扇形的半徑是圓錐側(cè)面的母線長(zhǎng)、弧長(zhǎng)是圓錐底面圓的周長(zhǎng)、圓心是圓錐的頂點(diǎn)。如果設(shè)圓錐底面半徑為r,側(cè)面母線長(zhǎng)(扇形半徑)是l,底面圓周長(zhǎng)(扇形弧長(zhǎng))為c,那么它的側(cè)面積是:S=cl/2=2rl/3=rl。總面積=側(cè)面積+底面積19.若四邊形的四個(gè)頂點(diǎn)都在同一個(gè)圓上,這個(gè)四邊形叫做圓內(nèi)接四邊形,這個(gè)圓叫做這個(gè)四邊形的外接圓。圓內(nèi)接四邊形的特征: 圓內(nèi)接四邊形的對(duì)角互補(bǔ);圓內(nèi)接四邊形任意一個(gè)外角等于它的內(nèi)錯(cuò)角。20.切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等。如圖7,CD 切O 于C,則,ACD=B。21和圓有關(guān)的比例線段:相交弦定理:圓內(nèi)的兩條弦相交,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等;推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。如圖8,APB=CPD,如圖9,若CDAB 于P,AB 為O 直徑,則CP2=APB。22切割線定理:切割線定理,從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng);推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。如圖10, PT 切O 于T,PA 是割線,點(diǎn)A、B 是它與O 的交點(diǎn),則PT2=PAB,PA、PC 是O 的兩條割線,則PDC=PBA。23兩圓連心線的性質(zhì):如果兩圓相切,那

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論