南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁南昌大學(xué)科學(xué)技術(shù)學(xué)院《機器學(xué)習(xí)課程設(shè)計》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進行機器學(xué)習(xí)模型評估時,除了準(zhǔn)確性等常見指標(biāo)外,還可以使用混淆矩陣來更詳細(xì)地分析模型的性能。對于一個二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個指標(biāo)可以通過混淆矩陣計算得到,并且對于不平衡數(shù)據(jù)集的評估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)2、某研究需要對生物信息數(shù)據(jù)進行分析,例如基因序列數(shù)據(jù)。以下哪種機器學(xué)習(xí)方法在處理生物信息學(xué)問題中經(jīng)常被應(yīng)用?()A.隱馬爾可夫模型B.條件隨機場C.深度學(xué)習(xí)模型D.以上方法都常用3、當(dāng)使用支持向量機(SVM)進行分類任務(wù)時,如果數(shù)據(jù)不是線性可分的,通常會采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法4、考慮一個圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是5、機器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機器學(xué)習(xí)可以用于文本分類、情感分析、機器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和發(fā)展6、機器學(xué)習(xí)中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務(wù),優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法7、在機器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進行一次,后續(xù)不需要再進行調(diào)整和優(yōu)化8、假設(shè)正在研究一個語音合成任務(wù),需要生成自然流暢的語音。以下哪種技術(shù)在語音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語音轉(zhuǎn)換模型C.語音韻律模型D.以上技術(shù)都很重要9、假設(shè)正在構(gòu)建一個語音識別系統(tǒng),需要對輸入的語音信號進行預(yù)處理和特征提取。語音信號具有時變、非平穩(wěn)等特點,在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對語音信號進行分幀和加窗C.將語音信號轉(zhuǎn)換為頻域表示D.對語音信號進行壓縮編碼,減少數(shù)據(jù)量10、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能11、假設(shè)正在研究一個時間序列預(yù)測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以12、假設(shè)正在進行一項時間序列預(yù)測任務(wù),例如預(yù)測股票價格的走勢。在選擇合適的模型時,需要考慮時間序列的特點,如趨勢、季節(jié)性和噪聲等。以下哪種模型在處理時間序列數(shù)據(jù)時具有較強的能力?()A.線性回歸模型,簡單直接,易于解釋B.決策樹模型,能夠處理非線性關(guān)系C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠捕捉時間序列中的長期依賴關(guān)系D.支持向量回歸(SVR),對小樣本數(shù)據(jù)效果較好13、某機器學(xué)習(xí)項目旨在識別手寫數(shù)字圖像。數(shù)據(jù)集包含了各種不同風(fēng)格和質(zhì)量的手寫數(shù)字。為了提高模型的魯棒性和泛化能力,以下哪種數(shù)據(jù)增強技術(shù)可以考慮使用?()A.隨機裁剪B.隨機旋轉(zhuǎn)C.隨機添加噪聲D.以上技術(shù)都可以14、假設(shè)要使用機器學(xué)習(xí)算法來預(yù)測房價。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹回歸模型C.支持向量回歸模型D.以上模型都可能適用15、在進行機器學(xué)習(xí)模型訓(xùn)練時,過擬合是一個常見的問題。過擬合意味著模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在新的、未見過的數(shù)據(jù)上表現(xiàn)不佳。為了防止過擬合,可以采取多種正則化方法。假設(shè)我們正在訓(xùn)練一個神經(jīng)網(wǎng)絡(luò),以下哪種正則化技術(shù)通常能夠有效地減少過擬合?()A.增加網(wǎng)絡(luò)的層數(shù)和神經(jīng)元數(shù)量B.在損失函數(shù)中添加L1正則項C.使用較小的學(xué)習(xí)率進行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋機器學(xué)習(xí)在園藝設(shè)計中的植物搭配。2、(本題5分)機器學(xué)習(xí)在精神醫(yī)學(xué)中的研究成果有哪些?3、(本題5分)什么是對抗防御技術(shù)?常見的對抗防御方法有哪些?4、(本題5分)機器學(xué)習(xí)在營養(yǎng)學(xué)中的應(yīng)用是什么?三、論述題(本大題共5個小題,共25分)1、(本題5分)探討機器學(xué)習(xí)在智能交通信號控制中的應(yīng)用及優(yōu)化。機器學(xué)習(xí)可以應(yīng)用于交通信號控制,提高交通流量和減少擁堵。分析其在智能交通信號控制中的具體應(yīng)用方法,并討論優(yōu)化策略。2、(本題5分)論述機器學(xué)習(xí)在電信領(lǐng)域的應(yīng)用。討論網(wǎng)絡(luò)流量預(yù)測、客戶流失預(yù)測、故障檢測等方面的機器學(xué)習(xí)方法和應(yīng)用效果。3、(本題5分)分析機器學(xué)習(xí)中的異常檢測在工業(yè)故障診斷中的應(yīng)用。異常檢測可以幫助發(fā)現(xiàn)工業(yè)故障,介紹其在工業(yè)故障診斷中的應(yīng)用方法。4、(本題5分)論述機器學(xué)習(xí)在自然語言處理中的作用。包括文本分類、機器翻譯、情感分析等方面,闡述不同算法在這些任務(wù)中的優(yōu)勢與局限性。5、(本題5分)分析機器學(xué)習(xí)算法中的圖神經(jīng)網(wǎng)絡(luò)。論述圖神經(jīng)網(wǎng)絡(luò)的基本原理和應(yīng)用場景,如社交網(wǎng)絡(luò)分析、化學(xué)分子結(jié)構(gòu)預(yù)測等。探討圖神經(jīng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論