




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴陽市八下數(shù)學期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.某特警部隊為了選拔“神槍手”,舉行了1000米射擊比賽,最后甲、乙兩名戰(zhàn)士進入決賽,在相同條件下,兩人各射靶10次,經過統(tǒng)計計算,甲、乙兩名戰(zhàn)士的總成績都是99.68環(huán),甲的方差是0.28,乙的方差是是0.1.則下列說法中,正確的是()A.甲的成績比乙的成績穩(wěn)定 B.乙的成績比甲的成績穩(wěn)定C.甲、乙兩人成績的穩(wěn)定性相同 D.無法確定誰的成績更穩(wěn)定2.如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規(guī)律。則第(6)個圖形中面積為1的正方形的個數(shù)為()A.20 B.25 C.35 D.273.下列計算正確的是A. B. C. D.4.一個多邊形的內角和是1800°,則這個多邊形是()邊形.A.9 B.10 C.11 D.125.如圖,在△ABC中,D,E分別是邊AB,AC的中點,已知BC=10,則DE的長為()A.3B.4C.5D.66.若樣本數(shù)據(jù)3,4,2,6,x的平均數(shù)為5,則這個樣本的方差是()A.3 B.5 C.8 D.27.教育局組織學生籃球賽,有x支球隊參加,每兩隊賽一場時,共需安排45場比賽,則符合題意的方程為()A. B. C. D.8.用反證法證明“三角形的三個外角中至多有一個銳角”,應先假設A.三角形的三個外角都是銳角B.三角形的三個外角中至少有兩個銳角C.三角形的三個外角中沒有銳角D.三角形的三個外角中至少有一個銳角9.如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為()A. B. C. D.10.甲、乙兩班分別由10名選手參加健美比賽,兩班參賽選手身高的方差分別是S甲2=1.5,S乙2=2.5,則下列說法正確的是()A.甲班選手比乙班選手的身高整齊 B.乙班選手比甲班選手的身高整齊C.甲、乙兩班選手的身高一樣整齊 D.無法確定哪班選手的身高整齊二、填空題(每小題3分,共24分)11.關于x的分式方程有增根,則a=_____.12.如圖,在平行四邊形ABCD中,AB=4,∠ABC=60°,點E為BC上的一點,點F,G分別為DE,AD的中點,則GF長的最小值為________________.13.平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,點E在AB上且AE:EB=1:2,點F是BC中點,過D作DP⊥AF于點P,DQ⊥CE于點Q,則DP:DQ=_______.14.在函數(shù)中,自變量的取值范圍是__________.15.已知一組數(shù)據(jù):10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把這組數(shù)據(jù)按照6~7,8~9,10~11,12~13分組,那么頻率為0.4的一組是_________.16.如圖,在中,,,點D在邊上,若以、為邊,以為對角線,作,則對角線的最小值為_______.17.在平面直角坐標系xOy中,第三象限內有一點A,點A的橫坐標為﹣2,過A分別作x軸、y軸的垂線,垂足為M、N,矩形OMAN的面積為6,則直線MN的解析式為_____.18.如圖,正方形的兩邊、分別在軸、軸上,點在邊上,以為中心,把旋轉,則旋轉后點的對應點的坐標是________.三、解答題(共66分)19.(10分)如圖,直線y1=2x-2的圖像與y軸交于點A,直線y2=-2x+6的圖像與y軸交于點B,兩者相交于點C.(1)方程組的解是______;(2)當y1>0與y2>0同時成立時,x的取值范圍為_____;(3)求△ABC的面積;(4)在直線y1=2x-2的圖像上存在異于點C的另一點P,使得△ABC與△ABP的面積相等,請求出點P的坐標.20.(6分)某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:(1)請將下表補充完整:(參考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均數(shù)方差中位數(shù)甲77乙5.4(2)請從下列三個不同的角度對這次測試結果進行分析:①從平均數(shù)和方差相結合看,的成績好些;②從平均數(shù)和中位數(shù)相結合看,的成績好些;③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.21.(6分)如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,O為對角線AC、BD的交點,且∠CAE=15°.(1)求證:△AOB為等邊三角形;(2)求∠BOE度數(shù).22.(8分)某校要從王同學和李同學中挑選一人參加縣知識競賽在五次選拔測試中他倆的成績如下表.第1次第2次第3次第4次第5次王同學60751009075李同學70901008080根據(jù)上表解答下列問題:(1)完成下表:姓名平均成績(分)中位數(shù)(分)眾數(shù)(分)方差王同學807575_____李同學(2)在這五次測試中,成績比較穩(wěn)定的同學是誰?若將80分以上(含80分)的成績視為優(yōu)秀,則王同學、李同學在這五次測試中的優(yōu)秀率各是多少?(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為應選誰參加比賽比較合適?說明你的理由.23.(8分)如圖,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分線交BC于D,垂足為E,BD=4cm.求AC的長.24.(8分)中國經濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學參加“國防知識”比賽,其預賽成績如圖所示:(1)根據(jù)上圖填寫下表:平均數(shù)中位數(shù)眾數(shù)甲班8.58.5乙班8.510(2)分別求甲乙兩班的方差,并從穩(wěn)定性上分析哪個班的成績較好.25.(10分)為了了解初中階段女生身高情況,從某中學初二年級120名女生中隨意抽出40名同齡女生的身高數(shù)據(jù),經過分組整理后的頻數(shù)分布表及頻數(shù)分布直方圖如圖所示:結合以上信息,回答問題:(1)a=______,b=______,c=______.(2)請你補全頻數(shù)分布直方圖.(3)試估計該年級女同學中身高在160~165cm的同學約有多少人?26.(10分)某商場計劃購進甲、乙兩種商品共件,這兩種商品的進價、售價如表所示:進價(元/件)售價(元/件)甲種商品乙種商品設購進甲種商品(,且為整數(shù))件,售完此兩種商品總利潤為元.(1)該商場計劃最多投入元用于購進這兩種商品共件,求至少購進甲種商品多少件?(2)求與的函數(shù)關系式;(3)若售完這些商品,商場可獲得的最大利潤是__________元.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大小)在樣本容量相同的情況下,方差越小,說明數(shù)據(jù)的波動越小,越穩(wěn)定.因此,∵0.1<0.28,∴乙的成績比甲的成績穩(wěn)定.故選B.2、D【解析】
第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=個,進一步求得第(6)個圖形中面積為1的正方形的個數(shù)即可.【詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數(shù)為2+3+4+5+6+7=27個。故選:D【點睛】此題考查規(guī)律型:圖形的變化類,解題關鍵在于找到規(guī)律3、A【解析】A.,故正確;B.,故不正確;C.,故不正確;D.,故不正確;故選A.4、D【解析】
根據(jù)n邊形的內角和是(n﹣2)×180,根據(jù)多邊形的內角和為1800,就得到一個關于n的方程,從而求出邊數(shù).【詳解】根據(jù)題意得:(n﹣2)×180=1800,解得:n=1.故選:D.【點睛】此題主要考查多邊形的內角和,解題的關鍵是熟知n邊形的內角和是(n﹣2)×180.5、C【解析】解:∵△ABC中,D,E分別是邊AB,AC的中點,∴DE是△ABC的中位線,故DE=AD=×10=1.故選C6、C【解析】
先由平均數(shù)是5計算出x的值,再計算方差.【詳解】解:∵數(shù)據(jù)3,4,2,6,x的平均數(shù)為5,∴,解得:x=10,則方差為×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故選:C.【點睛】本題考查的是平均數(shù)和方差的求法.計算方差的步驟是:①計算數(shù)據(jù)的平均數(shù);②計算偏差,即每個數(shù)據(jù)與平均數(shù)的差;③計算偏差的平方和;④偏差的平方和除以數(shù)據(jù)個數(shù).7、A【解析】
先列出x支籃球隊,每兩隊之間都比賽一場,共可以比賽x(x-1)場,再根據(jù)題意列出方程為.【詳解】解:∵有x支球隊參加籃球比賽,每兩隊之間都比賽一場,
∴共比賽場數(shù)為,
故選:A.【點睛】本題是由實際問題抽象出一元二次方程,主要考查了從實際問題中抽象出相等關系.8、B【解析】
反證法的步驟中,第一步是假設結論不成立,反面成立.【詳解】解:用反證法證明“三角形的三個外角中至多有一個銳角”,應先假設三角形的三個外角中至少有兩個銳角,故選B.【點睛】考查了反證法,解此題關鍵要懂得反證法的意義及步驟在假設結論不成立時要注意考慮結論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.9、C【解析】
設矩形ABCD的面積為S,則平行四邊形AOC1B的面積=矩形ABCD的面積=S,平行四邊形AO1C2B的面積=平行四邊形AOC1B的面積=,…,平行四邊形AOn-1CnB的面積=,平行四邊形AOnCn+1B的面積=,即可得出結果.【詳解】解:設矩形ABCD的面積為S根據(jù)題意得:平行四邊形AOC1B的面積=矩形ABCD的面積=S平行四邊形AO1C2B的面積=平行四邊形AOC1B的面積=,…平行四邊形AOn-1CnB的面積=∴平行四邊形AOnCn+1B的面積=∴平行四邊形的面積=故選C.【點睛】本題考查了矩形的性質、平行四邊形的性質、規(guī)律推論等知識,熟練掌握矩形的性質和平行四邊形的性質,得出平行四邊形AOnCn+1B的面積=是解題的關鍵.10、A【解析】
∵=1.5,=2.5,∴<,則甲班選手比乙班選手身高更整齊,故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.二、填空題(每小題3分,共24分)11、a=-1【解析】
根據(jù)分式方程的解法求出方程的解,然后根據(jù)方程有增根,則x=-5,從而得出a的值.【詳解】去分母可得:1+a=x+5,解得:x=a-2,∵分式方程有增根,∴x=-5,即a-2=-5,解得:a=-1.【點睛】本題主要考查的是分式方程的解得情況,屬于中等難度的題型.分式方程有增根是因為整式方程的解會使得分式的分母為零.12、【解析】
根據(jù)G、F分別為AD和DE的中點,欲使GF最小,則只要使AE為最短,即AE必為△ABC中BC邊上的高,再利用三角形的中位線求解即可.【詳解】解:∵G、F分別為AD和DE的中點,∴線段GF為△ADE的邊AD及DE上的中位線,∴GF=AE,欲使GF最小,則只要使AE為最短,∴AE必為△ABC中BC邊上的高,∵四邊形ABCD為一平行四邊形且AB=4、∠ABC=60°,作AE⊥BC于E,E為垂足,∴∠BAE=30°,∴BE=2,∴AE=,∴GF=AE=.故答案為.【點睛】本題考查了最短路徑,點到直線的距離及三角形的中位線定理,掌握點到直線的距離及三角形的中位線定理是解題的關鍵.13、2:【解析】【分析】連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,根據(jù)三角形的面積和平行四邊形的面積得出S△DEC=S△DFA=S平行四邊形ABCD,求出AF×DP=CE×DQ,設AB=3a,BC=2a,則BF=a,BE=2a,BN=a,BM=a,F(xiàn)N=a,CM=a,求出AF=a,CE=2a,代入求出即可.【詳解】連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,∵根據(jù)三角形的面積和平行四邊形的面積得:S△DEC=S△DFA=S平行四邊形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四邊形ABCD是平行四邊形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴設AB=3a,BC=2a,∵AE:EB=1:2,F(xiàn)是BC的中點,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a?DP=2a?DQ,∴DP:DQ=2:,故答案為:2:.【點睛】本題考查了平行四邊形面積,勾股定理,三角形的面積,含30度角的直角三角形等知識點的應用,求出AF×DP=CE×DQ和AF、CE的值是解題的關鍵.14、x≠2【解析】
根據(jù)分式有意義的條件進行求解即可.【詳解】由題意得,2x-4≠0,解得:x≠2,故答案為:x≠2.【點睛】本題考查了函數(shù)自變量的取值范圍,一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.15、【解析】
首先數(shù)出數(shù)據(jù)的總數(shù),然后數(shù)出各個小組內的數(shù)據(jù)個數(shù),根據(jù)頻率的計算公式,求出各段的頻率,即可作出判斷.【詳解】解:共有10個數(shù)據(jù),其中6~7的頻率是1÷10=0.1;
8~9的頻率是6÷10=0.3;
10~11的頻率是8÷10=0.4;
11~13的頻率是4÷10=0.1.
故答案為.【點睛】本題考查頻數(shù)與頻率,掌握頻率的計算方法:頻率=頻數(shù)÷總數(shù).16、1【解析】
由平行四邊形的對角線互相平分、垂線段最短知,當OD⊥BC時,DE線段取最小值,由三角形中位線定理求出OD,即可得出DE的最小值.【詳解】解:∵,,根據(jù)勾股定理得,∵四邊形是平行四邊形,,∴當取最小值時,線段最短,即時最短,是的中位線,,,故答案為:1.【點睛】本題考查了平行四邊形的性質,勾股定理以及垂線段最短,此題難度適中,注意掌握數(shù)形結合思想的應用.17、y=﹣x﹣1【解析】
確定M、N點的坐標,再利用待定系數(shù)法求直線MN的關系式即可.【詳解】由題意得:OM=2,∴M(-2,0)∵矩形OMAN的面積為6,∴ON=6÷2=1,∵點A在第三象限,∴N(0,-1)設直線MN的關系式為y=kx+b,(k≠0)將M、N的坐標代入得:b=-1,-2k+b=0,解得:k=-,b=-1,∴直線MN的關系式為:y=-x-1故答案為:y=-x-1.【點睛】考查待定系數(shù)法求一次函數(shù)的關系式,確定點的坐標是解決問題的關鍵.18、或【解析】
分逆時針旋轉和順時針旋轉兩種情況考慮:①順時針旋轉時,由點D的坐標利用正方形的性質可得出正方形的邊長以及BD的長度,由此可得出點D′的坐標;②逆時針旋轉時,找出點B′落在y軸正半軸上,根據(jù)正方形的邊長以及BD的長度即可得出點D′的坐標.綜上即可得出結論.【詳解】解:分逆時針旋轉和順時針旋轉兩種情況(如圖所示):
①順時針旋轉時,點B′與點O重合,∵點D(4,3),四邊形OABC為正方形,∴OA=BC=4,BD=1,∴點D′的坐標為(-1,0);②逆時針旋轉時,點B′落在y軸正半軸上,∵OC=BC=4,BD=1,∴點B′的坐標為(0,8),點D′的坐標為(1,8).故答案為:(-1,0)或(1,8).【點睛】本題考查了正方形的性質,旋轉的性質,以及坐標與圖形變化中的旋轉,分逆時針旋轉和順時針旋轉兩種情況考慮是解題的關鍵.三、解答題(共66分)19、(1);(2)1<x<3;(3)8;(4)P(-2,-6)【解析】
(1)根據(jù)圖像可知,兩條直線的交點即為方程組的解;(2)找出兩條直線的圖像在x軸上方的公共部分的x的取值范圍即可;(3)令x=0,求出y1與y2的值,即可得A、B兩點的坐標,進而可得AB的長度,根據(jù)C點坐標為(2,2),可得△ABC的高,即可求出面積;(4)令P(x0,2x0-2),根據(jù)三角形面積公式可得x0=±2,由點P異于點C可得x0=-2,代入y1=2x-2即可的P點坐標.【詳解】(1)由圖像可知直線y1=2x-2的圖像與直線y2=-2x+6的交點坐標為(2,2)∴方程組的解集為,(2)根據(jù)圖像可知:當y1>0與y2>0同時成立時,x的取值范圍為1<x<3.(3)∵令x=0,則y1=-2,y2=6,∴A(0,-2),B(0,6).∴AB=8.∴S△ABC=×8×2=8.(4)令P(x0,2x0-2),則S△ABP=×8×|x0|=8,∴x0=±2.∵點P異于點C,∴x0=-2,2x0-2=-6.∴P(-2,-6).【點睛】此題考查了一次函數(shù)綜合題,涉及的知識有:一次函數(shù)與坐標軸的交點,坐標與圖形性質,三角形面積,以及兩一次函數(shù)的交點,熟練掌握一次函數(shù)圖像的特征是解題關鍵.20、(1)1.2,7,7.5;(2)甲,乙,乙,理由見解析.【解析】分析:(1)根據(jù)統(tǒng)計表,結合平均數(shù)、方差、中位數(shù)的定義,即可求出需要填寫的內容.(2)①可分別從平均數(shù)和方差兩方面著手進行比較;②可分別從平均數(shù)和中位數(shù)兩方面著手進行比較;③可從具有培養(yǎng)價值方面說明理由.詳解:解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均數(shù):(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位數(shù):(7+8)÷2=7.5,填表如下:平均數(shù)方差中位數(shù)甲71.27乙75.47.5(2)①從平均數(shù)和方差相結合看,甲的成績好些;②從平均數(shù)和中位數(shù)相結合看,乙的成績好些;③選乙參加.理由:綜合看,甲發(fā)揮更穩(wěn)定,但射擊精準度差;乙發(fā)揮雖然不穩(wěn)定,但擊中高靶環(huán)次數(shù)更多,成績逐步上升,提高潛力大,更具有培養(yǎng)價值,應選乙.故答案為:(1)1.2,7,7.5;(2)①甲;②乙.點睛:本題考查了折線統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵,折線統(tǒng)計圖能清楚地看出數(shù)據(jù)的變化情況.21、(1)見解析;(2)75°【解析】試題分析:(1)因為四邊形ABCD是矩形,所以OA=OB,則只需求得∠BAC=60°,即可證明三角形是等邊三角形;(2)因為∠B=90°,∠BAE=45°,所以AB=BE,又因為△ABO是等邊三角形,則∠OBE=30°,故∠BOE度數(shù)可求.(1)證明:∵四邊形ABCD是矩形∴∠BAD=∠ABC=90°,AO=BO=AC=BD∵AE是∠BAD的角平分線;∴∠BAE=45°∵∠CAE=15°∴∠BAC=60°∴△AOB是等邊三角形;(2)解:∵在Rt△ABE中,∠BAE=45°∴AB=BE∵△ABO是等邊三角形∴AB=BO∴OB=BE∵∠OBE=30°,OB=BE,∴∠BOE=(180°﹣30°)=75°.22、(1)見解析(2)小李(3)李同學【解析】
(1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差、極差的概念求得相關的數(shù);(2)方差反映數(shù)據(jù)的離散程度,所以方差越小越穩(wěn)定,因此小李的成績穩(wěn)定;用優(yōu)秀的次數(shù)除以測驗的總次數(shù)即可求出優(yōu)秀率;(3)選誰參加比賽的答案不唯一,小李的成績穩(wěn)定,所以獲獎的幾率大;小王的95分以上的成績好,則小王獲一等獎的機會大.【詳解】(1)姓名平均成績(分)中位數(shù)(分)眾數(shù)(分)方差王同學807575190李同學848080104(2)在這五次考試中,成績比較穩(wěn)定的是小李,小王的優(yōu)秀率=×100%=40%,小李的優(yōu)秀率=×100%=80%;(3)我選李同學去參加比賽,因為李同學的優(yōu)秀率高,有4次得80分以上,成績比較穩(wěn)定,獲獎機會大.【點睛】本題考查了方差、中位數(shù)及眾數(shù)的知識,屬于基礎題,一些同學對方差的公式記不準確或粗心而出現(xiàn)錯誤.23、12【解析】
如圖,連接AD,根據(jù)垂直平分線的性質可得BD=AD,進而得到∠DAC的度數(shù)和DC的長,再根據(jù)勾股定理求出AC的長即可.【詳解】如圖,連接AD,∵ED是AB的垂直平分線,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=12AD∴AC=AD故答案是12.【點睛】本題主要考查垂直平分線的性質以及三角函數(shù),求出∠DAC的大小是解題的關鍵.24、(1)甲眾數(shù):8.5,乙中位數(shù):8;(2)甲班的成績較好.【解析】試題分析:(1)根據(jù)眾數(shù)的概念找出出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)中位數(shù)的求解方法進行求解,即可解答;(2)先求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小學會計試題及答案
- 云南省迪慶州香格里拉中學2024-2025學年高二下物理期末學業(yè)質量監(jiān)測試題含解析
- 浙江省寧波市達標名校2025年物理高二下期末學業(yè)水平測試模擬試題含解析
- 水利工程采購合同模板框架協(xié)議
- 公共資源交易平臺標準招標代理合同
- 特色小吃街店鋪承包管理與分紅合同
- 國際豪華郵輪度假服務合同
- 車輛交易雙方車輛過戶責任合同模板
- 無人機宿舍樓安全監(jiān)控與維護承包合同
- 城市排水綜合執(zhí)法行政處罰裁量基準執(zhí)行標準
- 高原病科發(fā)展規(guī)劃
- 鉆芯法檢測技術自測題單選題100道及答案
- 《Python程序設計基礎教程(微課版)》全套教學課件
- 行賄懺悔書-保證書
- HG∕T 4377-2012 浮動上濾式過濾器
- 機關事務管理局門套施工合同
- 畢業(yè)設計(論文)-某中型貨車懸架總成設計
- 廣東省汕尾市2023-2024學年八年級下學期7月期末生物試題
- 2024年上海卷高考數(shù)學真題試卷及答案
- 《百合花開》教學設計
- 模擬電子技術基礎智慧樹知到期末考試答案章節(jié)答案2024年北京航空航天大學
評論
0/150
提交評論