2024屆山東濟寧任城區(qū)中考五模數(shù)學試題含解析_第1頁
2024屆山東濟寧任城區(qū)中考五模數(shù)學試題含解析_第2頁
2024屆山東濟寧任城區(qū)中考五模數(shù)學試題含解析_第3頁
2024屆山東濟寧任城區(qū)中考五模數(shù)學試題含解析_第4頁
2024屆山東濟寧任城區(qū)中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆山東濟寧任城區(qū)中考五模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.2.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1073.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁4.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.5.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.66.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣27.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.8.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°9.下列二次根式中,是最簡二次根式的是()A. B. C. D.10.下列因式分解正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.觀光塔是濰坊市區(qū)的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.12.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________13.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.14.如圖,PC是⊙O的直徑,PA切⊙O于點P,AO交⊙O于點B;連接BC,若,則______.15.如圖,中,,,,將繞點逆時針旋轉(zhuǎn)至,使得點恰好落在上,與交于點,則的面積為_________.16.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號)三、解答題(共8題,共72分)17.(8分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.18.(8分)閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結(jié)論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.19.(8分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.20.(8分)為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)21.(8分)如圖,△ABC中,D是BC上的一點,若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.22.(10分)如圖,在?ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,點F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.23.(12分)我市為創(chuàng)建全國文明城市,志愿者對某路段的非機動車逆行情況進行了10天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計圖(圖2不完整):請根據(jù)所給信息,解答下列問題:(1)這組數(shù)據(jù)的中位數(shù)是,眾數(shù)是;(2)請把圖2中的頻數(shù)直方圖補充完整;(溫馨提示:請畫在答題卷相對應的圖上)(3)通過“小手拉大手”活動后,非機動車逆向行駛次數(shù)明顯減少,經(jīng)過這一路段的再次調(diào)查發(fā)現(xiàn),平均每天的非機動車逆向行駛次數(shù)比第一次調(diào)查時減少了4次,活動后,這一路段平均每天還出現(xiàn)多少次非機動車逆向行駛情況?24.如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)實數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點睛】本題考查了實數(shù)的大小比較的應用,掌握正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)比較大小,其絕對值大的反而小是解題的關(guān)鍵.2、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學記數(shù)法—表示較大的數(shù),解題的關(guān)鍵是掌握科學記數(shù)法的概念進行解答.3、B【解析】

利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質(zhì)一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質(zhì)、等邊三角形的性質(zhì)、軸對稱圖形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.4、D【解析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.5、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).6、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.7、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.8、B【解析】

根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等9、B【解析】

根據(jù)最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.10、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內(nèi)不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關(guān)鍵是掌握提公因式法和公式法的方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.12、75°【解析】

先根據(jù)同旁內(nèi)角互補,兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.13、【解析】

首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.14、26°【解析】

根據(jù)圓周角定理得到∠AOP=2∠C=64°,根據(jù)切線的性質(zhì)定理得到∠APO=90°,根據(jù)直角三角形兩銳角互余計算即可.【詳解】由圓周角定理得:∠AOP=2∠C=64°.∵PC是⊙O的直徑,PA切⊙O于點P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案為:26°.【點睛】本題考查了切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.15、【解析】

首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關(guān)系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,

∴∠A=60°,

∵△ABC繞點C逆時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,

∴CA=CA′=2,∠CA′B′=∠A=60°,

∴△CAA′為等邊三角形,

∴∠ACA′=60°,

∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,

∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,

在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關(guān)系,等邊三角形的判定和性質(zhì)以及旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)“對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等”是解題的關(guān)鍵.16、40【解析】

利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.三、解答題(共8題,共72分)17、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.18、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解析】

(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數(shù),∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.19、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙希ㄟ^證明四邊形是平行四邊形達到上述目的.20、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【解析】

(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.21、3【解析】試題分析:根據(jù)AB=30,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.試題解析:∵BD3+AD3=63+83=303=AB3,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=,∴S△ABC=BC?AD=(BD+CD)?AD=×33×8=3,因此△ABC的面積為3.答:△ABC的面積是3.考點:3.勾股定理的逆定理;3.勾股定理.22、證明見解析.【解析】

利用三角形中位線定理判定OE∥BC,且OE=BC.結(jié)合已知條件CF=BC,則OE//CF,由“有一組對邊平行且相等的四邊形為平行四邊形”證得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴點O是BD的中點.又∵點E是邊CD的中點,∴OE是△BCD的中位線,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論