2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷含解析_第1頁
2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷含解析_第2頁
2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷含解析_第3頁
2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷含解析_第4頁
2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省溫州市八中學中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.2014年我省財政收入比2013年增長8.9%,2015年比2014年增長9.5%,若2013年和2015年我省財政收入分別為a億元和b億元,則a、b之間滿足的關系式為()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%) D.b=a2.下列各式正確的是()A. B.C. D.3.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.4.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm25.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.6.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣27.實數(shù)a,b,c在數(shù)軸上對應點的位置如圖所示,則下列結論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c8.下列圖形中,周長不是32m的圖形是()A. B. C. D.9.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.10.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如果一個扇形的弧長等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.12.如圖,將邊長為1的正方形的四條邊分別向外延長一倍,得到第二個正方形,將第二個正方形的四條邊分別向外延長一倍得到第三個正方形,…,則第2018個正方形的面積為_____.13.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數(shù)為_____度.14.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點A,點B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點,順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請回答:該尺規(guī)作圖的依據(jù)是_____.15.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.16.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側面,這個圓錐的底面圓的半徑為____.三、解答題(共8題,共72分)17.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數(shù).18.(8分)八年級(1)班學生在完成課題學習“體質健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.19.(8分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.20.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.21.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.22.(10分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調一些同學去參加歌詠比賽.如果從甲班抽調的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調了多少參加歌詠比賽?23.(12分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現(xiàn)甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?24.求不等式組的整數(shù)解.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)2013年我省財政收入和2014年我省財政收入比2013年增長8.9%,求出2014年我省財政收入,再根據(jù)出2015年比2014年增長9.5%,2015年我省財政收為b億元,即可得出a、b之間的關系式.【詳解】∵2013年我省財政收入為a億元,2014年我省財政收入比2013年增長8.9%,∴2014年我省財政收入為a(1+8.9%)億元,∵2015年比2014年增長9.5%,2015年我省財政收為b億元,∴2015年我省財政收為b=a(1+8.9%)(1+9.5%);故選C.【點睛】此題考查了列代數(shù)式,關鍵是根據(jù)題意求出2014年我省財政的收入,是一道基礎題.2、A【解析】∵,則B錯;,則C;,則D錯,故選A.3、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.4、A【解析】

根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.5、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結果有9種,兩次摸出的球都是黑球的結果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.6、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.7、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關系,考查了不等關系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù).8、B【解析】

根據(jù)所給圖形,分別計算出它們的周長,然后判斷各選項即可.【詳解】A.L=(6+10)×2=32,其周長為32.B.該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.C.L=(6+10)×2=32,其周長為32.D.L=(6+10)×2=32,其周長為32.采用排除法即可選出B故選B.【點睛】此題考查多邊形的周長,解題在于掌握計算公式.9、A【解析】

根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.10、A【解析】

利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題分析:根據(jù)題意可得圓心角的度數(shù)為:,則S==1.考點:扇形的面積計算.12、1【解析】

先分別求出第1個、第2個、第3個正方形的面積,由此總結規(guī)律,得到第n個正方形的面積,將n=2018代入即可求出第2018個正方形的面積.【詳解】:∵第1個正方形的面積為:1+4×12×2×1=5=51;

第2個正方形的面積為:5+4×12×25×5=25=52;

第3個正方形的面積為:25+4×12×225×25=125=53【點睛】本題考查了規(guī)律型:圖形的變化類,解題的關鍵是得到第n個正方形的面積.13、1【解析】

根據(jù)△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【點睛】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.14、相等的圓心角所對的弦相等,直徑所對的圓周角是直角.【解析】

根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點在這條線段的中垂線上;兩點確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【點睛】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質,解本題的要點在于熟知相關基本知識點.15、1【解析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點睛】圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.16、【解析】試題分析:,解得r=.考點:弧長的計算.三、解答題(共8題,共72分)17、(1)詳見解析;(2)80°.【分析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【解析】

(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質.18、(1)36,40,1;(2).【解析】

(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權平均數(shù)的概念計算訓練后籃球定時定點投籃人均進球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;

該班共有學生(2+1+7+4+1+1)÷10%=40人;

訓練后籃球定時定點投籃平均每個人的進球數(shù)是=1,

故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.19、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;(2)利用正弦的定義計算;(3)證明△CDF∽△AOF,根據(jù)相似三角形的性質得到CD=CE,根據(jù)等腰三角形的性質證明.【詳解】(1)證明:連接OA,由圓周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直徑,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切線;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)證明:由(2)知,OA是△BDE的中位線,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【點睛】本題考查的是圓的知識的綜合應用,掌握圓周角定理、相似三角形的判定定理和性質定理、三角形中位線定理是解題的關鍵.20、(1)證明見解析;(2)【解析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結論;(2)首先根據(jù)三角函數(shù)的性質,求得BD,DE,AE的長,然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.21、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】

(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;(4)設該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質知,a+b不存在最大值,當a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論