廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題含解析_第1頁
廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題含解析_第2頁
廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題含解析_第3頁
廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題含解析_第4頁
廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市越秀區(qū)達標名校2024屆中考五模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(-ab2)3÷(-ab)2的結果是()A.ab4B.-ab4C.ab3D.-ab32.若正比例函數y=3x的圖象經過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y23.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數是()A.1個 B.2個 C.3個 D.4個4.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)5.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.46.某廠進行技術創(chuàng)新,現在每天比原來多生產30臺機器,并且現在生產500臺機器所需時間與原來生產350臺機器所需時間相同.設現在每天生產x臺機器,根據題意可得方程為()A. B. C. D.7.已知實數a、b滿足,則A. B. C. D.8.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或9.如圖,數軸上有A,B,C,D四個點,其中表示互為相反數的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C10.1903年、英國物理學家盧瑟福通過實驗證實,放射性物質在放出射線后,這種物質的質量將減少,減少的速度開始較快,后來較慢,實際上,放射性物質的質量減為原來的一半所用的時間是一個不變的量,我們把這個時間稱為此種放射性物質的半衰期,如圖是表示鐳的放射規(guī)律的函數圖象,根據圖象可以判斷,鐳的半衰期為()A.810年 B.1620年 C.3240年 D.4860年二、填空題(共7小題,每小題3分,滿分21分)11.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數為__________12.如圖,二次函數y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結PB、PC.則△PBC的面積為_____.13.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當天南部地區(qū)比北部地區(qū)的平均氣溫高_____℃.14.若一次函數y=﹣2(x+1)+4的值是正數,則x的取值范圍是_______.15.若關于x的一元二次方程有兩個不相等的實數根,則k的取值范圍是______.16.若正六邊形的內切圓半徑為2,則其外接圓半徑為__________.17.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈到達點B,那么所用細線最短需要_____cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F,G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.19.(5分)如圖,已知二次函數的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.20.(8分)某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.21.(10分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉,得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結果即可).22.(10分)有一項工程,若甲隊單獨做,恰好在規(guī)定日期完成,若乙隊單獨做要超過規(guī)定日期3天完成;現在先由甲、乙兩隊合做2天后,剩下的工程再由乙隊單獨做,也剛好在規(guī)定日期完成,問規(guī)定日期多少天?23.(12分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.求反比例函數的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.24.(14分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】根據積的乘方的運算法則,先分別計算積的乘方,然后再根據單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.2、A【解析】

分別把點A(?1,y1),點B(?1,y1)代入函數y=3x,求出點y1,y1的值,并比較出其大小即可.【詳解】解:∵點A(?1,y1),點B(?1,y1)是函數y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【點睛】本題考查的是一次函數圖象上點的坐標特點,即一次函數圖象上各點的坐標一定適合此函數的解析式.3、C【解析】

從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數的圖象解決實際問題,正確理解函數圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數問題的相應解決.需注意計算單位的統一.4、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.5、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.6、A【解析】

根據現在生產500臺機器所需時間與原計劃生產350臺機器所需時間相同,所以可得等量關系為:現在生產500臺機器所需時間=原計劃生產350臺機器所需時間.【詳解】現在每天生產x臺機器,則原計劃每天生產(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.7、C【解析】

根據不等式的性質進行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項錯誤;

B、,但不一定成立,例如:,,故本選項錯誤;

C、時,成立,故本選項正確;

D、時,成立,則不一定成立,故本選項錯誤;

故選C.【點睛】考查了不等式的性質要認真弄清不等式的基本性質與等式的基本性質的異同,特別是在不等式兩邊同乘以或除以同一個數時,不僅要考慮這個數不等于0,而且必須先確定這個數是正數還是負數,如果是負數,不等號的方向必須改變.8、B【解析】分析:根據位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.9、C【解析】

根據相反數的定義進行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據相反數和為0的特點,可確定點A和點D表示互為相反數的點.故答案為C.【點睛】本題考查了相反數的定義,掌握相反數和為0是解答本題的關鍵.10、B【解析】

根據半衰期的定義,函數圖象的橫坐標,可得答案.【詳解】由橫坐標看出1620年時,鐳質量減為原來的一半,故鐳的半衰期為1620年,故選B.【點睛】本題考查了函數圖象,利用函數圖象的意義及放射性物質的半衰期是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、75°【解析】

先根據同旁內角互補,兩直線平行得出AC∥DF,再根據兩直線平行內錯角相等得出∠2=∠A=45°,然后根據三角形內角與外角的關系可得∠1的度數.【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點睛】本題考查了平行線的判定與性質,三角形外角的性質,求出∠2=∠A=45°是解題的關鍵.12、4【解析】

根據二次函數的對稱性求出點A的坐標,從而得出BC的長度,根據點C的坐標得出三角形的高線,從而得出答案.【詳解】∵二次函數的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【點睛】本題主要考查的是二次函數的對稱性,屬于基礎題型.理解二次函數的軸對稱性是解決這個問題的關鍵.13、3【解析】

用南部氣溫減北部的氣溫,根據“減去一個數等于加上這個數的相反數”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數的減法運算法則,減法運算法則:減去一個數等于加上這個數的相反數.14、x<1【解析】

根據一次函數的性質得出不等式解答即可.【詳解】因為一次函數y=﹣2(x+1)+4的值是正數,可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【點睛】本題考查了一次函數與一元一次不等式,根據題意正確列出不等式是解題的關鍵.15、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數根,解得:且故答案為且16、【解析】

根據題意畫出草圖,可得OG=2,,因此利用三角函數便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內接圓和外接圓,關鍵在于根據題意畫出草圖,再根據三角函數求解,這是多邊形問題的解題思路.17、1【解析】

要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.三、解答題(共7小題,滿分69分)18、(1)6π;(2)GB=DF,理由詳見解析.【解析】

(1)根據弧長公式l=nπr180【詳解】解:(1)∵AD=2,∠DAE=90°,

∴弧DE的長l1=90×π×2180=π,

同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,

所以,點D運動到點G所經過的路線長l=l1+l2+l【點睛】本題考查弧長公式以及全等三角形的判定和性質,題目比較簡單,解題關鍵掌握是弧長公式.19、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據相似三角形的性質得到=2,設OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據相似三角形的判定和性質即可得到結論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當AP最大時,OE的值最大,∵當P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.20、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】

解:(1)根據題意得:

D級的學生人數占全班人數的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數是:20%×360°=72°;

(3)∵A等人數為10人,所占比例為20%,

∴抽查的學生數=10÷20%=50(人),

∴D級的學生人數是50×10%=5(人),

補圖如下:

(4)根據題意得:

體育測試中A級和B級的學生人數之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學生人數之和是330名.【點睛】本題考查統計的知識,要求考生會識別條形統計圖和扇形統計圖.21、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】

(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關系得,AP<AB+BP,∴當點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(2)的關鍵是四邊形MCND'是平行四邊形,解(3)的關鍵是判斷出點A,C,P三點共線時,AP最大.22、規(guī)定日期是6天.【解析】

本題的等量關系為:甲工作2天完成的工作量+乙規(guī)定日期完成的工作量=1,把相應數值代入即可求解.【詳解】解:設工作總量為1,規(guī)定日期為x天,則若單獨做,甲隊需x天,乙隊需x+3天,根據題意列方程得

解方程可得x=6,

經檢驗x=6是分式方程的解.

答:規(guī)定日期是6天.23、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數圖象上,結合一次函數解析式可求出點A的坐標,再由點A的坐標利用待定系數法即可求出反比例函數解析式,聯立兩函數解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論