




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ELLIPTICCURVES
J.S.MILNE
August21,1996;vl.Ol
ABSTRACT.ThesearethenotesforMath679,UniversityofMichigan.Winter1996,exactly
astheywerehandedoutduringthecourseexceptforsomeminorcorrections.
Pleasesendcommentsandcorrectionstomeatjmilne@using“Math679“as
thesubject.
CONTENTS
Introduction1
Fastfactorizationofintegers
Congruentnumbers
Fermat5slasttheorem
1.ReviewofPlaneCurves2
Affineplanecurves
Projectiveplanecurves
2.RationalPointsonPlaneCurves.6
Hensel'slemma.
Abriefintroductiontothep-adicnumbers
Somehistory
3.TheGroupLawonaCubicCurve12
4.FunctionsonAlgebraicCurvesandtheRiemann-RochTheorem14
Regularfunctionsonaffinecurves
Regularfunctionsonprojectivecurves
TheRiemann-Rochtheorem
Thegrouplawrevisited
Perfectbasefields
5.DefinitionofanEllipticCurve19
Planeprojectivecubiccurveswitharationalinflectionpoint
Generalplaneprojectivecurves
Completenonsingularcurvesofgenus1
Copyright1996J.S.Milne.Youmaymakeonecopyofthesenotesforyourownpersonaluse.
i
J.S.MILNE
Thecanonicalformoftheequation
Thegrouplawforthecanonicalform
ReductionofanEllipticCurveModulop23
Algebraicgroupsofdimension1
Singularcubiccurves
Reductionofanellipticcurve
Semistablereduction
Reductionmodulo2and3
Otherfields
7.EllipticCurvesover29
8.TorsionPoints32
Formulas
SolutiontoExercise4.8
9.NeronModels37
Weierstrassminimalmodels
TheworkofKodaira
ThecompleteNeronmodel
Summary
10.EllipticCurvesovertheComplexNumbers41
Latticesandbases
QuotientsofCbylattices
Doublyperiodicfunctions
TheholomorphicmapsC/A—C/Az
TheWeierstrasspfunction
Eisensteinseries
Thefieldofdoublyperiodicfunctions
TheellipticcurveF(A)
ClassificationofellipticcurvesoverC
Torsionpoints
Endomorphisms
Appendix:Resultants
11.TheMordell-WeilTheorem:StatementandStrategy54
12.Groupcohomology55
Cohomologyoffinitegroups
CohomologyofinfiniteGaloisgroups
13.TheSelmerandTate-Shafarevichgroups59
ELLIPTICCURVESiii
14.TheFinitenessoftheSelmerGroup60
ProofofthefinitenessoftheSelmergroupinaspecialcase
ProofofthefinitenessoftheSelmergroupinthegeneralcase
15.Heights65
HeightsonP1
HeightsonE
16.CompletionoftheProofoftheMordell-WeilTheorem,andFurtherRe-
marks70
TheProblemofComputingtheRankofE(Q)
TheNeron-TatePairing
Computingtherank
17.GeometricInterpretationoftheCohomologyGroups;Jacobians75
Principalhomogeneousspaces(ofsets)
Principalhomogeneousspaces(ofcurves)
Theclassificationofprincipalhomogeneousspaces
GeometricInterpretationof
GeometricInterpretationoftheExactSequence
TwistsofEllipticCurves
Curvesofgenus1
TheclassificationofellipticcurvesoverQ(summary)
18.TheTate-ShafarevichGroup;FailureOfTheHassePrinciple83
19.EllipticCurvesOverFiniteFields86
TheFrobeniusmap;curvesofgenus1overFp
Zetafunctionsofnumberfields
Zetafunctionsofaffinecurvesoverfinitefields
ExpressionofZ(C,T)intermsofthepointsofC
Zetafunctionsofplaneprojectivecurves
Therationalityofthezetafunctionofanellipticcurve
ProofoftheRiemannhypothesisforellipticcurves
ABriefHistoryofZeta
20.TheConjectureofBirchandSwinnerton-Dyer100
Introduction
ThezetafunctionofavarietyoverQ
ThezetafunctionofanellipticcurveoverQ
StatementoftheConjectureofBirchandSwinnerton-Dyer
What'sknownabout,theconjectureofB-S/D
ivJ.S.MILNE
21.EllipticCurvesandSpherePackings106
Spherepackings
Example
22.AlgorithmsforEllipticCurves110
23.TheRiemannSurfacesX()(N)112
ThenotionofaRiemannsurface
QuotientsofRiemannsurfacesbygroupactions
TheRiemannsurfacesX(「)
Thetopologyonr\IHI*
ThecomplexstructureonFo(N)\H*
ThegenusofX°(N)
24.Xo(N)asanAlgebraicCurveoverQ119
Modularfunctions
ThemeromorphicfunctionsonX。⑴
ThemeromorphicfunctionsonXo(N)
ThecurveX()(N)overQ
ThepointsonthecurveX()(N)
Variants
25.ModularForms125
Definitionofamodularform
Themodularformsforr()⑴
26.ModularFormsandtheL-seriesofEllipticCurves128
DirichletSeries
TheL-seriesofanellipticcurve
L-seriesandisogenyclasses
TheL-seriesofamodularform
ModularformswhoseL-serieshaveafunctionalequations
ModularformswhoseL-functionsareEulerproducts
DefinitionoftheHeckeoperators
Linearalgebra:thespectraltheorem
ThePeterssoninnerproduct
Newforms:thetheoremofAtkinandLehner
27.StatementoftheMainTheorems140
28.HowtogetanEllipticCurvefromaCuspForm142
DifferentialsonRiemannsurfaces
TheJacobianvarietyofaRiemannsurface
ConstructionoftheellipticcurveoverC
ELLIPTICCURVESv
ConstructionoftheellipticcurveoverQ
29.WhytheL-SeriesofEAgreeswiththeL-Seriesoff147
Theringofcorrespondencesofacurve
TheHeckecorrespondence
TheFrobeniusmap
Briefreviewofthepointsoforderponellipticcurves
TheEichler-Shimurarelation
Thezetafunctionofanellipticcurverevisited
TheactionoftheHeckeoperatorsonZ)
Theproofthatc(p)=ap
30.Wiles'sProof153
31.Fermat,AtLast156
Bibliography157
ELLIPTICCURVES1
INTRODUCTION
Anellipticcurveoverafieldkisanonsingularcompletecurveofgenus1withadistin-
guishedpoint.Ifcharfc*2,3,itcanberealizedasaplaneprojectivecurve
222
yZ=X3+aXZ+bZ\4Q3+276*0,
andeverysuchequationdefinesanellipticcurveoverk.Asweshallsee,thearithmetic
theoryofellipticcurvesoverQ(andotheralgebraicnumberfields)isarichabeautiful
subject.Manyimportantphenomenafirstbecomevisibleinthestudyellipticcurves,and
ellipticcurveshavebeenusedsolvesomeveryfamousproblemsthat,atfirstsight,appear
tohavenothingtodowithellipticcurves.Imentionthreesuchproblems.
Fastfactorizationofintegers.Thereisanalgorithmforfactoringintegersthatuses
ellipticcurvesandisinmanyrespectsbetterthanpreviousalgorithms.See[K2,VI.4],
[ST,IV.4],or[C2,Chapter26].Peoplehavebeenfactoringintegersforcenturies,butrecently
thetopichasbecomeofpracticalsignificance:givenanintegernwhichistheproductn=pq
oftwo(large)primespandq,thereisacodeforwhichanyonewhoknowsncanencodea
message,butonlythosewhoknowp,qcandecodeit.Thesecurityofthecodedependson
nounauthorizedpersonbeingabletofactorn.
Congruentnumbers.Anaturalnumbernissaidtobecongruentifitoccursasthearea
ofarighttrianglewhosesideshaverationallength.Ifwedenotethelengthsofthesidesby
%n,thennwillbecongruentifandonlyiftheequations
9701
x+y=z、n=^xy
havesimultaneoussolutionsinQ.TheproblemwasofinteresttotheGreeks,andwas
discussedsystematicallybyArabscholarsinthetenthcentury.Fibonaccishowedthat5and
6arecongruent,Fermatthat1,2,3,arenotcongruent,andEulerprovedthat7iscongruent,
buttheproblemappearedhopelessuntilin1983Tunnellrelatedittoellipticcurves.
Fermafslasttheorem.RecentlyWilesprovedthatallellipticcurvesoverQ(withamild
restriction)ariseinacertainfashionfrommodularforms.Itfollowsfromhistheorem,that
foranoddprimep#3,theredoesnotexistanellipticcurveoverQwhoseequationhasthe
form
y2=X(X+Q)(X-b)
witha,b,a+ballpowersofintegers,i.e.,theredoesnotexistanontrivialsolutioninZ
totheequation
X。+Yp=Z。;
—Fermat^LastTheoremisproved!
Thecoursewillbeanintroductorysurveyofthesubjectoftenproofswillonlybe
sketched,butIwilltrytogiveprecisereferencesforeverything.
Therearemanyexcellentbooksonsubject-seetheBibliography.Silverman[S1,S2]is
becomingthestandardreference.
2J.S.MILNE
1.REVIEWOFPLANECURVES
Affineplanecurves.Letkbeafield.TheaffineplaneoverkisA2(fc)=k'2.
Anonconstantpolynomialfek[X,V],assumedtohavenorepeatedfactorinka][X,Y],
definesaplaneaffinecurveCfoverkwhosepointswithcoordinatesinanyfieldKDkare
thezerosoffinK2:
Cf(K)={(?y)EK2|F(x,y)=0}.
ThecurveCissaidtobeirreducibleiffisirreducible,anditissaidbegeometrically
irreducibleiffremainsirreducibleoverfcal(equivalent^,overanyalgebraicallyclosedfield
containingAr).
Sincek[X,Y]isauniquefactorizationdomain,wecanwriteanyfasaboveasaproduct
f=/1/2,,?/r°fdistinctirreduciblepolynomials,andthen
Cf=Cf}U???UC7r
withtheC//.irreduciblecurves.TheCy.arecalledtheirreduciblecomponentsofC/.
Example1.1.(a)Let/《X,Y)beanirreduciblepolynomialinY],noconstant
multipleofwhichliesQ[X,Y],andlet/i(X,Y)beitsconjugateoverQ(i.e.,replaceeach
,2with—,2).Then/(X,Y)=可/i(X,Y)&(X,Y)liesinQ[X,Y]becauseitisfixedby
theGaloisgroupofQ[,2]/Q.ThecurveCfisirreduciblebutnotgeometricallyirreducible.
(b)Letkbeafieldofcharacteristicp.Assumekisnotperfect,sothatthereexistsan
aek,akp.Consider
f(X,Y)=Xp+aYp.
Thenfisirreducibleink[X,F],butinfcal[X,Y]itequals(X+aY)pwhereo?=a(remember,
thebinomialtheoremtakesonaspeciallysimpleformforpthpowersincharacteristicp).
Thusfdoesnotdefineacurve.
Wedefinethepartialderivativesofapolynomialbytheobviousformulas.
LetP—(a,6)GC/(X),someKDk.Ifatleastoneofthepartialderivatives£,靠is
nonzeroatP,thenPissaidtobenonsingular,andthetangentlinetoCatPis
(&JX-W(i=0.
AcurveCissaidtobenonsingularifallthepointsinarenonsingular.Acurveor
pointthatisnotnonsingularsaidtobesingular.
Aside1.2.Lety)beareal-valuedfunctiononR2.InMath215onelearnsthatV/=可
(K,fy)isavectorfieldonR2that,atanypointP=(a,b)GR2,pointsinthedirection
inwhichJ(x,y)increasesmostrapidly(i.e.,hasthemostpositivedirectionalderivative).
Hence(V/)pisnormaltoanylevelcurve/(T,y)=cthroughF,andtheline
(▽/)P?(X—Q,Y—b)=0
passesthroughPandisnormaltothenormaltothelevelcurve.Itisthereforethetangent
line.
ELLIPTICCURVES3
Example1.3.Considerthecurve
c:產(chǎn)=+Q.X+b.
AtasingularpointofC
2Y=0,3X?+Q=0,產(chǎn)=+ax+b.
Assumechark*2.HenceY=QandXisacommonrootofX3+aX+bandits
derivative,i.e.,adoublerootofX3+aX+b.ThusCisnonsingular4=>X3+aX+bhas
nomultipleroot(infcal)<=>itsdiscriminant4a3+27/isnonzero.
Assumechark=2.ThenCalwayshasasingularpoint(possiblyinsomeextensionfield
ofk),namely,wherea:2+a=0and儼—+aa+6.
LetP=(a,b)€Cf(K).Wecanwrite/asapolynomialmX—aandY—bwith
coefficientsinK、say,
".)=/i(x_a,y_4+???+/n(x__b)
whereishomogeneousofdegreeiinX—aandY—h(thistheTaylorexpansionoffl).
ThepointPisnonsingularifandonlyiffi*0,inwhichcasethetangentlinetoC/atP
hasequation/i=0.
SupposethatPissingular,sothat
/(X,F)=fm(X—a,Y—b)+termsofhigherdegree,
wherefm7^0,m>2.ThenPissaidtohavemultiplicitymonC,denotedmp(C).If
m=2,thenPiscalledadoublepoint.Forsimplicity,take(a,b)=(0,0).Then(over
?(X,y)=nw
whereeachLiisahomogeneouspolynomialQX+&YofdegreeonewithcoefficientsinA:al.
ThelinesLi=0arecalledthetangentlinestoC(atP,and%iscalledmultiplicityofL,.
ThepointPissaidtobeanordinarysingularityifthetangentlinesarealldistinct,i.e.,
ri=1foralli.Anordinarydoublepointiscalledanode.
Example1.4.ThecurveY2=X,3+aX2hasasingularityat(0,0).Ifa*0,itisanode,
andthetangentlinesat(0,0)areY=±,QX.Theyaredefinedoverkifandonlyifaisa
squareink.
IfQ=0,thesingularityisacusp.(AdoublepointPonacurveCiscalledacuspifthere
isonlyonetangentlineLto(7atP,and,withthenotationdefinedbelow,/(P,LAC)=3.)
2
ConsidertwocurvesCfandCginA(fe),andletPeC*/(X)Dg(K),someKDk.
AssumethatPisanisolatedpointofCfACg,i.e.,CfandCgdonothaveacommon
irreduciblecomponentpassingthroughP.WedefinetheintersectionnumberofCyandCg
atPtobe
KP,CfQCg)=dimKK[X,¥]—/(/,g)
(dimensionasX-vectorspaces).
Remark1.5.IfCfandCghavenocommoncomponent,then
EnQ)=din.k[X,Y]/U,g).
尸€C(A:a】)CC(ka】)
ThisisparticularlyusefulwhenCfandCgintersectatasinglepoint.
4J.S.MILNE
Example1.6.LetCbethecurveY2=X3,andletL:Y=0beitstangentlineat
P=(0,0).Then
233
I(F,£nC)=dimkk[X,Y]/(Y.Y-X)=dimfck[X]/(X)=3.
Remark1.7.(a)Theintersectionnumberdoesn'tdependonwhichfieldKthecoordinates
ofPareconsideredtoliein.
(b)Asexpected,/(F,CnZ?)=1ifandonlyifPisnonsingularonbothCandD,andthe
tangentlinestoCandDatParedistinct.Moregenerally,/(P,CC\D)>
withequalityifandonlyifCandDhavenotangentlineincommonatP.
Projectiveplanecurves.Theprojectiveplaneoverkis
呼⑻={(a;,y,z)ek3\(x,y,z)*(0,0,0)}/?
where(①,y,z)?(/,y1ifandonlyifthereexistsac#0suchthaty\z')=(CN,cy,cz).
Wewrite(x:y:z)fortheequivalenceclass1of(①,y,z).LetPGP2(fc);thetriples(①,y,z)
representingPlieonasinglelineL(P)throughtheoriginink3,andP一L(P)isabijection
fromP2(fc)tothesetofallsuchlines.
Projectiven-spacePn(fc)canbedefinedsimilarlyforanyn>0.
LetUQ={(z:g:z}|z00},andlet={(z:y:z)\z=0}.Then
(z,0)i(c:y:1):A2(fc)—UQ
isabijection,and
(s:y)i(?:y:0):W/)-Lg(k)
isabijection.Moreover,P2(A;)isthedisjointunion
ofthe"affineplane"UQwiththe“l(fā)ineatinfinity"L^.Aline
aX+bY+cZ=Q
meetsatthepoint(—b:Q:0)=(1:—。0).ThuswecanthinkofP2(fe)asbeingthe
affineplanewithexactlyonepointaddedforeachfamilyofparallellines.
AnonconstanthomogeneouspolynomialFGassumedtohavenorepeated
factorink%definesaprojectiveplanecurveCFoverkwhosepointsinanyfieldKDkare
thezerosofFinP2(K):
。尸(K)={(x:y:z)\F(x,yYz)=0}.
Notethat,becauseFishomogeneous,
F(cx,cy,cz)=cde&FF(x,y,z),
andso,althoughitdoesn'tmakesensetospeakofthevalueofFatapointofP2,itdoes
makesensetosaywhetherornotFiszeroatP.Again,thedegreeofFiscalledthe
degreeofthecurveC,andaplaneprojectivecurveis(uniquely)aunionofirreducibleplane
projectivecurves.
Thecurve
y2Z=X3+aXZ2+bZ3
iThecolonismeanttosuggestthatonlytheratiosmatter.
ELLIPTICCURVES5
intersectsthelineatinfinityatthepoint(0:1:0),i.e.,atthesamepointasallthevertical
linesdo.Thisisplausiblegeometrically,because,asyougoouttheaffinecurve
Y2^X3+aX+h
withincreasingxandy,theslopeofthetangentlinetendstooo.
LetUi={(/:y:z}\y0},andletU2={(n:y:z)\x*0}.ThenUiandU2areagain,
inanaturalway,affineplanes;forexample,wecanidentify?withA2(fc)via
(7:1:2)一(x,z).
Sinceatleastoneofn,y,orzisnonzero,
/⑻=UoUUiUU2.
AplaneprojectivecurveC=CFistheunionofthreecurves,
C=CoUClUC25Ci=CnUi.
WhenweidentifyeachUiwithA2(fc)inthenaturalway,thenandC?become
identifiedwiththeaffinecurvesdefinedbythepolynomialsF(X,K,1),F(X,1,Z),and
F(l,y,Z)respectively.
Thecurve
C:y2z=X3+aX#+bZ3
isunusual,inthatitiscoveredbytwo(ratherthan3)affinecurves
Co:Y2=X3+aX+b
and
Ci:Z=X3+QXZ?+bZ3.
Thenotionsoftangentline,multiplicity,etc.canbeextendedtoprojectivecurvesby
notingthateachpointPofaprojectivecurveCwilllieonatleastoneoftheaffinecurves
Exercise1.8.LetPbeapointonaplaneprojectivecurveC=CF,ShowthatPis
singular,i.e.,itissingularontheplaneaffinecurveGforone(henceall)iifandonlyif
F(P)=0=(fy)=(器)=(歌).IfPisnonsingular,showthattheplaneprojective
line
Z=0
心黑)產(chǎn)得力圖p
hasthepropertythatLAisthetangentlinetotheaffinecurveCCU&forz=0,1,2.
Theorem1.9(Bezout).LetCandDbeplaneprojectiveofdegreesmandnrespectively
overk,andassumethattheyhavenoirreduciblecomponentincommon.Thentheyintersect
al
overkinexactlymnpoints,countingmultiplicitiesfie,
£Z(P,Cn/?)=mn.
Proof.See[F]pll2,ormanyotherbooks.
6J.S.MILNE
Forexample,acurveofdegreemwillmeetthelineatinfinityinexactlympoints,counting
multiplicities.Ourfavouritecurve
C:y2Z=X3+aXZ2+bZ3
meetsLgatasinglepointP=(0:1:0),butI(P,LgClC)=3.[Exercise:Provethis!]In
general,anonsingularpointPonacurveCiscalledapointofinflectioniftheintersection
multiplicityofthetangentlineand(7atPis>3.
Supposekisperfect.ThenallthepointsofC(fcal)Cl。(爐])willhavecoordinatesinsome
finiteGaloisextensionKofk,andtheset
C(K)AO(K)CP2(7<)
isstableundertheactionofGal(K/k).
Remark1.10.(Fortheexperts.)Essentially,wehavedefinedanaffine(resp.projective)
curvetobeageometricallyreducedclosedsubschemeofA差(resp.吸)ofdimension1.Such
aschemecorrespondstoanidealofheightone,whichisprincipal,becausepolynomialrings
areuniquefactorizationdomains.Thepolynomialgeneratingtheidealoftheschemeis
uniquelydeterminedbytheschemeuptomultiplicationbyanonzeroconstant.Theother
definitionsinthissectionarestandard.
References:Thebestreferenceforwhatlittleweneedfromalgebraicgeometryis[F].
2.RATIONALPOINTSONPLANECURVES.
LetCbeaplaneprojectivecurveoverQ(orsomeotherfieldwithaninterestingarith-
metic),definedbyahomogeneouspolynomialF(X,K,Z),Thetwofundamentalquestions
indiophantinegeometrythenare:
Question2.1.(a)DoesChaveapointinQ,thatis,doesF(X,Y,Z)haveanontrivialzero
inQ?
(b)Iftheanswerto(a)isyes,canwedescribethesetofcommonzeros?
Thereisalsothequestionofwhetherthereisanalgorithmtoanswerthesequestions.
Forexample,wemayknowthatacurvehasonlyfinitelymanypointswithouthavingan
algorithmtoactuallyfindthepoints.
Forsimplicity,intheremainderofthissection,I'llassumethatCisabsolutelyirreducible,
i.e.,thatF(X,Y,Z)isirreducibleoverQal.
Hereisoneobservationthatweshallusefrequently.LetKbeafinite(ofeveninfinite)
GaloisextensionofQ,andlet
/(x,y)=£%xkwQ[x'.
If(a,b)6K2isazeroof以X,K),thensoalsois(OQ,ob)foranyoGGal(K/Q),because
0=(Q,b)=O(£Q〃Q%)=£049。)'(4加=
ThusGal(K/Q)actsonC(K),whereCistheaffinecurvedefinedbyMore
generally,ifCi,C2,...areaffinecurvesoverQ,thenGal(K/Q)stabilizesthesetC\(K)A
02(K)….Onapplyingthisremarktothecurves/(X,Y)=0,聶(X,Y)=0,柒(X)Y)=0,
weseethatGal(K/Q)stabilizesthesetofsingularpointsinSimilarremarksapply
toprojectivecurves.
ELLIPTICCURVES7
Curvesofdegreeone.Firstconsideracurveofdegreeone,i.e.,aline,
C:aX+hY+cZ=Q,a,h,cinQandnotallzero.
Italwayshaspoints,anditispossibletoparameterizethepoints:if,forexample,。羊0,the
map
/、/ab、
(s:力)1(s:力:一s—t)
cc
isabijectionfromPx(fc)ontoC(fe).
Curvesofdegreetwo.InthiscaseF(X,Y,Z)isaquadraticformin3variables,andCisa
conic.NotethatCcan'tbesingular:ifPhasmultiplicitym,then(accordingto(1.7b))a
lineLthroughPandasecondpointQonthecurvewillhave
/(RLAC)+I(Q,LnC)>2+1=3,
whichviolatesBezout'stheorem.
SometimesitiseasytoseethatC(Q)=0.Forexample,
X2+Y2+Z2
hasnonontrivialzerobecauseithasnonontrivialrealzero.Similarly,
X'2+Y2-3Z2
hasnonontrivialzero,becauseifitdiditwouldhaveazero(x,y,z)withx,y,z6Zand
gcd?y,z)=1.TheonlysquaresinZ/3Zare0and1,andso
x2+y2=0mod3
impliesthatx=Q=ymod3.Butthen3mustdivide%,whichcontradictsourassumption
thatgcd(%y、z)=1.Thisargumentshows,infact,thatX'2+Y'2—3Z2doesnothavea
nontrivialzerointhefieldQ3of3-adicnumbers.
Theseexamplesillustratetheusefulnessofthefollowingstatement:anecessarycondition
forCtohaveapointwithcoordinatesinQisthatithaveapointwithcoordinatesinR
andinQpforallp.AtheoremofLegendresaysthattheconditionisalsosufficient:
Theorem2.2(Legendre).AquadraticformF(X,KZ)withcoefficientsinQhasanon-
trivialzeroinQifandonlyifithasanontrivialzeroinIRandinforallp.
Remark2.3.(a)ThisisnotquitehowLegendre(17521833)statedit,sincep-adicnumbers
arelessthan100yearsold
(b)Thetheoremdoesinfactgiveapracticalalgorithmforshowingthataquadraticform
doeshaveanontrivialrationalzero——see(2.11)below.
(c)ThetheoremistrueforquadraticformsF(X(),,Xn)inanynumberofvariables
overanynumberfieldK(Hasse-Minkowskitheorem).Thereisaverydown-to-earthproof
oftheoriginalcaseofthetheoremin[C2]ittakesthreelectures.Agoodexpositionof
theproofforformsoverQinanynumberofvariablesistobefoundinSerre,Courseon
Arithmetic.Thekeycasesare3and4variables(2istrivial,andfor>5variables,oneuses
inductiononn),andthekeyresultneededforitsproofisthequadraticreciprocitylaw.
FornumberfieldsKotherQ,theproofrequirestheHilbertreciprocitylaw,whichisbest
derive
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合并馬蹄腎的腹主動(dòng)脈瘤的臨床護(hù)理
- 實(shí)體企業(yè)新質(zhì)生產(chǎn)力
- 加強(qiáng)倉(cāng)庫(kù)團(tuán)隊(duì)協(xié)作的培訓(xùn)計(jì)劃
- 教學(xué)成果展示計(jì)劃
- 建立跨部門(mén)的財(cái)務(wù)協(xié)作機(jī)制計(jì)劃
- 前臺(tái)文員如何應(yīng)對(duì)客戶(hù)的急需與緊急情況計(jì)劃
- 延安職業(yè)技術(shù)學(xué)院《公路工程造價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 科學(xué)游戲在幼兒園教學(xué)中的應(yīng)用計(jì)劃
- 秋季學(xué)術(shù)講座安排計(jì)劃
- 環(huán)保意識(shí)對(duì)品牌的塑造作用計(jì)劃
- ISOTS 22163專(zhuān)題培訓(xùn)考試
- 六年級(jí)下冊(cè)數(shù)學(xué)課件-第4單元 比例 整理和復(fù)習(xí) 人教版(共21張PPT)
- JJF(魯) 142-2022 稱(chēng)重式雨量計(jì)校準(zhǔn)規(guī)范
- Adobe-Illustrator-(Ai)基礎(chǔ)教程
- 程序的運(yùn)行結(jié)果PPT學(xué)習(xí)教案
- 圓柱鋼模計(jì)算書(shū)
- 合成寶石特征x
- 查擺問(wèn)題及整改措施
- 年度研發(fā)費(fèi)用專(zhuān)項(xiàng)審計(jì)報(bào)告模板(共22頁(yè))
- 隧道工程隧道支護(hù)結(jié)構(gòu)設(shè)計(jì)實(shí)用教案
- 得力打卡機(jī)破解Excel工作表保護(hù)密碼4頁(yè)
評(píng)論
0/150
提交評(píng)論