




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
16.1二次根式
第1課時(shí)二次根式的概念
教爵
i.能用二次根式表示實(shí)際問題中的數(shù)量及數(shù)量關(guān)系,體會(huì)研究二次根式的必要性;(難
2.能根據(jù)算術(shù)平方根的意義了解二次根式的概念及性質(zhì),會(huì)求二次根式中被開方數(shù)中
字母的取值范圍.(重點(diǎn))
一、情境導(dǎo)入
問題1:你能用帶有根號(hào)的式子填空嗎?
(1)面積為3的正方形的邊長為,面積為S的正方形的邊長為.
(2)一個(gè)長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為m.
(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間f(單位:s)與落下的高度〃(單位:
m)滿足關(guān)系/?=5尸,如果用含有的式子表示h則£=.
問題2:上面得到的式子小,小,刷,分別表示什么意義?它們有什么共同特征?
二、合作探究
探究點(diǎn)一:二次根式的定義
@D下列各式中,哪些是二次根式,哪些不是二次根式?
(1)VH;(2)V7r5;⑶?(—7)2;
(4)^13;I;⑹-3—x(xW3);
(7)y[--x(x^0);⑻d(〃一1『;(9h/—x2—5;
(10)M(〃一/)2(ab20).
解析:要判斷一個(gè)根式是不是二次根式,一是看根指數(shù)是不是2,二是看被開方數(shù)是不
是非負(fù)數(shù).
解:因?yàn)?TT,7(一7)233-X(xW3),7(4—1)2,7(〃—力)
(")0)中的根指數(shù)都是2,且被開方數(shù)為非負(fù)數(shù),所以都是二次根式.折5的根指數(shù)不是2,
[-5,x(x20),4-%2—'5的被開方數(shù)小于0,所以不是二次根式.
方法總結(jié):判斷一個(gè)式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶
二次根號(hào)“廠”;(2)被開方數(shù)是非負(fù)數(shù).
探究點(diǎn)二:二次根式有意義的條件
【類型一】根據(jù)二次根式有意義求字母的取值范圍
求使下列式子有意義的x的取值范圍.
⑴也F⑵X-2:⑶X.
解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0且分母不等于0,列
不等式(組)求解.
44I
解:(1)由題意得4—3x>0,解得當(dāng)時(shí),廣一有意義;
33y]4~3x
[3-x20,
(2)由題意得―解得xW3且x=2.當(dāng)xW3且xK2時(shí),工\l3二~廠x有意義;
[x—2W0,》一/
[x+520,\lx+5
(3)由題意得彳解得x2—5且xWO.當(dāng)x》一5且xWO時(shí),-有意義.
方法總結(jié):含二次根式的式子有意義的條件:
(1)如果一個(gè)式子中含有多個(gè)二次根式,那么它們有意義的條件是各個(gè)二次根式中的被
開方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數(shù)
為非負(fù)數(shù)外,還必須保證分母不為零.
[類型二]利用二次根式的非負(fù)性求解
畫U(l)已知4、b滿足,24+8+|6—小|=0,解關(guān)于x的方程3+2)x+〃=a-l;
(2)已知x、y都是實(shí)數(shù),且產(chǎn)出‘-3+<3-x+4,求必的平方根.
解析:(1)根據(jù)二次根式的非負(fù)性和絕對值的非負(fù)性求解即可;(2)根據(jù)二次根式的非負(fù)
性即可求得x的值,進(jìn)而求得y的值,進(jìn)而可求出尸的平方根.
j2a+8=0,f?=—4,
解:(1)根據(jù)題意得小_O解得fb—小則①+2)田+/=。一1,即一2欠+3=—5,
解得x=4;
[x—320,._
(2)根據(jù)題意得《解得x=3.則y=4,故)4=43=64,*7區(qū)=±8,的平方根
為±8.
方法總結(jié):二次根式和絕對值都具有非負(fù)性,幾個(gè)非負(fù)數(shù)的和為0,這幾個(gè)非負(fù)數(shù)都為
0.
探究點(diǎn)三:和二次根式有關(guān)的規(guī)律探究性問題
頤1先觀察下列等式,再回答下列問題.
(1)請你根據(jù)上面三個(gè)等式提供的信息,寫出的結(jié)果;
(2)請你按照上面各等式反映的規(guī)律,試寫出用
含n的式子表示的等式(〃為正整數(shù)).
解析:(1)從三個(gè)等式中可以發(fā)現(xiàn),等號(hào)右邊第一個(gè)加數(shù)都是1,第二個(gè)加數(shù)是個(gè)分?jǐn)?shù),
設(shè)分母為",第三個(gè)分?jǐn)?shù)的分母就是〃+1,結(jié)果是一個(gè)帶分?jǐn)?shù),整數(shù)部分是1,分?jǐn)?shù)部分的
分子也是1,分母是前項(xiàng)分?jǐn)?shù)的分母的積;(2)根據(jù)(1)找的規(guī)律寫出表示這個(gè)規(guī)律的式子.
解:⑴{1+.+/=1+廣本=由
QBX/I+H(〃,)2=1+1_*?=:(〃;i)(”為正整數(shù))?
方法總結(jié):解答規(guī)律探究性問題,都要通過仔細(xì)觀察找出字母和數(shù)之間的關(guān)系,通過閱
讀找出題目隱含條件并用關(guān)系式表示出來.
三、板書設(shè)計(jì)
1.二次根式的定義
一般地,我們把形如如320)的式子叫做二次根式.
2.二次根式有意義的條件
被開方數(shù)(式)為非負(fù)數(shù);W有意義
投卷鰻
通過將新知識(shí)與舊知識(shí)進(jìn)行聯(lián)系與對比,隨后由學(xué)生熟悉的實(shí)際問題出發(fā),用己有的知
識(shí)進(jìn)行探究,由此引入二次根式.在教學(xué)過程中讓學(xué)生感受到研究二次根式是實(shí)際的需要,
體會(huì)到數(shù)學(xué)與實(shí)際生活間的緊密聯(lián)系,以此充分激發(fā)學(xué)生學(xué)習(xí)的興趣
第一十六章二次根式
教材分析:
i.本單元教學(xué)的主要內(nèi)容:
二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.
學(xué)情分析:
新學(xué)期,根據(jù)八年級(jí)的實(shí)際,首先是先摸清底子,穩(wěn)住學(xué)生,然后根據(jù)學(xué)生學(xué)情分布情況,
重新劃分學(xué)習(xí)小組,對新轉(zhuǎn)班過來的學(xué)生,做好各方面的工作,使他們迅速適應(yīng)新環(huán)境,然
后,盡快幫他們找到新的學(xué)習(xí)榜樣和新學(xué)伴,幫他們樹立競爭意識(shí)和發(fā)展意識(shí)以及創(chuàng)新意識(shí),
鼓勵(lì)大家在新學(xué)期,獲得更大的進(jìn)步,取得更大的發(fā)展。
教學(xué)目標(biāo):
1.知識(shí)與技能
(1)理解二次根式的概念.
(2)理解(a20)是一個(gè)非負(fù)數(shù),()2=a(a20),=a(a20).
(3)掌握夜?\[b=\[ab(a20,bNO),4ab=4a?4b;
=、口(a>0,b>0),/Z-2^.(a20,b>0).
加Nb\b4h
(4)了解最簡二次根式的概念并靈活運(yùn)用它們對二次根式進(jìn)行加減.
2.過程與方法
(1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念.?再對概念的內(nèi)
涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡.
(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,?并運(yùn)用
規(guī)定進(jìn)行計(jì)算.
(3)利用逆向思維,?得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡.
(4)通過分析前面的計(jì)算和化簡結(jié)果,抓住它們的共同特點(diǎn),?給出最簡二次根式的概
念.利用最簡二次根式的概念,來對相同的二次根式進(jìn)行合并,達(dá)到對二次根式進(jìn)行計(jì)算和
化簡的目的.
3.情感、態(tài)度與價(jià)值觀
通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二
次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
教學(xué)重點(diǎn)
1.二次根式6(a20)的內(nèi)涵.4a(a20)是一個(gè)非負(fù)數(shù);(、份)2=a(a>0);后=a
(a20)?及其運(yùn)用.
2.二次根式乘除法的規(guī)定及其運(yùn)用.
3.最簡二次根式的概念.
4.二次根式的加減運(yùn)算.
教學(xué)難點(diǎn)
1.對G(a20)是一個(gè)非負(fù)數(shù)的理解;對等式(、份)2=a(a20)及J/=a(a20)
的理解及應(yīng)用.
2.二次根式的乘法、除法的條件限制.
3.利用最簡二次根式的概念把一個(gè)二次根式化成最簡二次根式.
教學(xué)關(guān)鍵
1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn).
2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,?培養(yǎng)學(xué)生一絲不茍
的科學(xué)精神.
單元課時(shí)劃分
本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:
16.1二次根式3課時(shí)
16.2二次根式的乘法3課時(shí)
16.3二次根式的加減3課時(shí)
教學(xué)活動(dòng)、習(xí)題課、小結(jié)2課時(shí)
16.1二次根式
教學(xué)內(nèi)容
二次根式的概念及其運(yùn)用
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解二次根式的概念,并利用6(a》0)的意義解答具體題目.
過程與方法目標(biāo):提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題.
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,
發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
教學(xué)重難點(diǎn)關(guān)鍵
1.重點(diǎn):形如、G(a>0)的式子叫做二次根式的概念;
2.難點(diǎn)與關(guān)鍵:利用(a,0)”解決具體問題.
教法:1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建
立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體
現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用:2、講練結(jié)合法:在
例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行
分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策
略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流
與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他
檢,提高學(xué)生的素質(zhì)。
媒體設(shè)計(jì):PPT課件,展臺(tái)。
課時(shí)安排:1課時(shí)。
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請同學(xué)們獨(dú)立完成下列三個(gè)問題:
3
問題1:已知反比例函數(shù)y=2,那么它的圖象在第一象限橫、?縱坐標(biāo)相等的點(diǎn)的坐標(biāo)
x
是.
問題2:如圖,在直角三角形ABC中,AC=3,BC=1,ZC=90°,那么AB邊的長是
老師點(diǎn)評(píng):
問題1:橫、縱坐標(biāo)相等,即*=丫,所以X2=3.因?yàn)辄c(diǎn)在第一象限,所以x=百,所以
所求點(diǎn)的坐標(biāo)(百,V3).
問題2:由勾股定理得AB=JI6
二、探索新知
很明顯6、M,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,
我們就把它稱二次根式.因此,一般地,我們把形如G(a20)?的式子叫做二次根式,“”
稱為二次根號(hào).
議一議:
1.一1有算術(shù)平方根嗎?
2.0的算術(shù)平方根是多少?
3.當(dāng)a<0,有意義嗎?
例1.下列式子,哪些是二次根式,哪些不是二次根式:血、g、L石(x>0),而、
X
蚯、-近、--—、Jx+y(x>0,y?20).
x+y
分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“一”;第二,被開方數(shù)是正數(shù)
或0.
解:二次根式有:0、G(x>0)>爬、-JI、>jx+y(x20,y》0);不是二次
根式的有:垂>、蚯、—.
xx+y
例2.當(dāng)x是多少時(shí),J3『-1在實(shí)數(shù)范圍內(nèi)有意義?
分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-l20,?J3X-1
才能有意義.
解:由3x-120,得:X21
3
當(dāng)X21時(shí),J3x-1在實(shí)數(shù)范圍內(nèi)有意義.
3
三、應(yīng)用拓展
例3.當(dāng)x是多少時(shí),,23+3+'一在實(shí)數(shù)范圍內(nèi)有意義?
X+1
分析:要使,2x+3+—L在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足j2x+3中的在0和」一中
X+lX+1
的X+1W0.
2x+3>0
解:依題意,得《
x+lwO
3
由①得:x'--
2
由②得:x#-l
當(dāng)X2-—且xW-l時(shí),,2x+3+——在實(shí)數(shù)范圍內(nèi)有意義.
2x+1
例4(1)已知y=j2-x+Jx-2+5,求上的值.(答案⑵
y
________2
(2)若不萬=0,求azw+b?00,的值.(答案:三)
四、歸納小結(jié)
本節(jié)課要掌握:
1.形如五(a20)的式子叫做二次根式,稱為二次根號(hào).
2.要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù).
五、布置作業(yè)
一、選擇題
1.下列式子中,是二次根式的是()
A.-V?B.近C.\[xD.x
2.下列式子中,不是二次根式的是()
A."B.V16C.瓜D.-
X
3.已知一個(gè)正方形的面積是5,那么它的邊長是()
A.5B.小C.-D.以上皆不對
5
二、填空題
1.形如的式子叫做二次根式.
2.面積為a的正方形的邊長為.
3.負(fù)數(shù)平方根.
三、綜合提高題
1.某工廠要制作一批體積為In?的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計(jì)需要,?底面應(yīng)
做成正方形,試問底面邊長應(yīng)是多少?
在實(shí)數(shù)范圍內(nèi)有意義?
2.當(dāng)x是多少時(shí),+3+*2
X
3.若-X+y]x-3有意義,則\Jx2=
4.使式子J—(X-5)2有意義的未知數(shù)X有()個(gè).
A.0B.1C.2D.無數(shù)
5.已知a、b為實(shí)數(shù),且夜一5+2>/10—2〃=b+4,求a、b的值.
答案:
一、1.A2.D3.B二、L4a(a20)2.4a3.沒有
三、1.設(shè)底面邊長為x,則02x2=1,解答:x=6.2.依題意得:,2“x+3>一0,「>一一5,
x。0八
I[x^O
.?.當(dāng)x>-3且xWO時(shí),,2元+3+x2在實(shí)數(shù)范圍內(nèi)沒有意義.
2x
1
3.—4.B5.a=5,b=-4
3
板書設(shè)計(jì):
§16.1.1.二次根式(1)
情境引入例2學(xué)生板演
二次根式的定義例3
例1例4小結(jié)
16.1二次根式(2)
教學(xué)內(nèi)容
1.4a(a20)是一個(gè)非負(fù)數(shù);
2.(-Ja)2=a(a20).
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解&(a20)是一個(gè)非負(fù)數(shù)和(&)2=a(a20),并利用它們進(jìn)行
計(jì)算和化簡.
過程與方法目標(biāo):過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出G(a>0)是一個(gè)非負(fù)
數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出(、份)2=a(a>0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題.
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,
發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
教學(xué)重難點(diǎn)關(guān)鍵
1.重點(diǎn):4a(a,0)是一個(gè)非負(fù)數(shù):()2=a(a,0)及其運(yùn)用.
2.難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出G(a,0)是一個(gè)非負(fù)數(shù);?用探究的方法導(dǎo)
出(\fa)2=a(a20).
教法:1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建
立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體
現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法:在
例題教學(xué)中,引導(dǎo)學(xué)生閱讀、類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培
養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生理解五(a>0)是一個(gè)非負(fù)數(shù)和(JZ)
2=a(a20),形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流
與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他
檢,提高學(xué)生的素質(zhì)。
媒體設(shè)計(jì):PPT課件,展臺(tái)。
課時(shí)安排:1課時(shí)。
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))口答
1.什么叫二次根式?
2.當(dāng)a20時(shí),而叫什么?當(dāng)a<0時(shí),G有意義嗎?
老師點(diǎn)評(píng)(略).
二、探究新知
議一議:(a>0)是一個(gè)什么數(shù)呢?
老師點(diǎn)評(píng):
、萬(a,0)是一個(gè)非負(fù)數(shù).
做一做:根據(jù)算術(shù)平方根的意義填空:
(C)2=;(&)2=;(囪)2=;(G)2=
(卜=——;(卜——;心'——
老師點(diǎn)評(píng):”是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,〃是一個(gè)平方等于4的
非負(fù)數(shù),因此有(、")2=34.
同理可得:(V2)2=2,(A/9)2=9,()2=3,(
2=0,所以
(y/a)2=a(a20)
例1、計(jì)算
22.(36)23.(E)24.(―)2
1.
V62
分析:我們可以直接利用(&)2=a(a20)的結(jié)論解題.
解:(2)2=2,(3石)2=32?(岔)2=32?5=45,
\22
(口2工(立),(V7)27
一二-------------——
\662224
三、鞏固練習(xí)
計(jì)算下列各式的值:
(V18)2(Vo)2
(3A/5)2-(5A/3)2
四、應(yīng)用拓展
例2、計(jì)算
1.(Jx+1)2(x20)2.3.(d+2a+1)~
4.(44(4£+)2
分析:(1)因?yàn)閤20,所以x+l>0;(2)a2>0;(3)a2+2a+l=(a+1)》0;
(4)4X2-12X+9=(2X)2-2?2x-3+32=(2x-3)2^0.
所以上面的4題都可以運(yùn)用(五)2=a(a>o)的重要結(jié)論解題.
解:(1)因?yàn)閤20,所以x+l>0
(Jx+1)2=x+1
(2)Va2^0,)2=a2
(3)Va2+2a+l=(a+1)2
又「(a+1)220,/.a2+2a+120,/.yja2+\=a2+2a+1
(4)V4X2-12X+9=(2X)2-2?2x?3+32=(2x-3)2
又;(2x-3)22。
/.4X2-12X+9^0.(\/4x2-12x+9)2=4x2-12x+9
例3、在實(shí)數(shù)范圍內(nèi)分解下列因式:
(1)X2-3(2)X4-4⑶2X2-3
分析:(略)
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
1.4a(a20)是一個(gè)非負(fù)數(shù);
2.(y[a)2=a(a20);反之:a=(\[a)2(a20).
六、布置作業(yè)
一、選擇題
22
1.下列各式中厲、技、揚(yáng)―1、yja+b,JW+20、J-144,二次根式
的個(gè)數(shù)是().
A.4B.3C.2D.1
2.數(shù)a沒有算術(shù)平方根,則a的取值范圍是().
A.a>0B.a20C.a<0D.a=0
二、填空題
1.(_6)2=.
2.已知有意義,那么是一個(gè)數(shù).
三、綜合提高題
i.計(jì)算
(1)(V9)2(2)-(G)2(3)(-76)2(4)(-3J-)2
2\3
(5)(273+3V2)(2A/3-3V2)
2.把下列非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式:
(1)5(2)3.4(3)-(4)x(x20)
6
3.已知Jx—y+l+Jx-3=0,求x'的值.
4.在實(shí)數(shù)范圍內(nèi)分解下列因式:
(1)X2-2(2)X4-93X2-5
答案:一、1.B2.C;二、1.32.非負(fù)數(shù);三、1.(1)(V9)2=9(2)
i17Jo9
-(>/3)2=-3(3)(—x/6)2=—X6=—;(4)(-3./—)2=9X—=6(5)-6
242\33
2.(1)5=(A/5)2;(2)3.4=(J3.4)2;(3)—=(.—)2;(4)x=(\[x)
6\6
2(x20)
y+1—0x=3>—r—
3.4*《xy=34=81;4.(1)X2-2=(x+V2)(x-V2)
x-3=0[y=4
(2)x4-9=(X2+3)(X2-3)=(X2+3)(x+6)(X-A/3);(3)略
板書設(shè)計(jì):
§16.1.二次根式(2)
情境引入例1學(xué)生板演
1.4a(a>0)是一個(gè)非負(fù)數(shù);例2
2.(\[a)2=a(a20);
反之:a=(G)2(a,0).例3小結(jié)
16.1二次根式(3)
教學(xué)內(nèi)容:值=a(a20)
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解J/=a(a^O)并利用它進(jìn)行計(jì)算和化簡.
過程與方法目標(biāo):通過具體數(shù)據(jù)的解答,探究J/=a(a》0),并利用這個(gè)結(jié)論解決具體
問題.
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,
發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
教學(xué)重難點(diǎn)關(guān)鍵
1.重點(diǎn):V7=a(a20).
2.難點(diǎn):探究結(jié)論.
3.關(guān)鍵:講清a》0時(shí),,了=2才成立.
教法:1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建
立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體
現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法:在
例題教學(xué)中,引導(dǎo)學(xué)生閱讀類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)
學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式
學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟,戶=2(a20),形成有效的學(xué)習(xí)策
略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流
與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他
檢,提高學(xué)生的素質(zhì)。
媒體設(shè)計(jì):PPT課件,展臺(tái)。
課時(shí)安排:1課時(shí)。
教學(xué)過程:一、復(fù)習(xí)引入
1.形如右(a>0)的式子叫做二次根式;
2.4a(a^O)是一個(gè)非負(fù)數(shù);
3.(\fa)2=a(a》0).
那么,我們猜想當(dāng)a20時(shí),,/=2是否也成立呢?下面我們就來探究這個(gè)問題.
二、探究新知
填空:
(老師點(diǎn)評(píng)):根據(jù)算術(shù)平方根的意義,我們可以得到:
亞=2;血喬=00;而牙木杼q;病行M
因此,一般地:|行=a(a20)
例1、化簡
(1)V9(2)Ji、(3)V25(4)J(-3)2
分析:因?yàn)?1)9=-32,(2)(-4)2=42,⑶25=52,
(4)(-3)2=32,所以都可運(yùn)用(a20)?去化簡.
解:(1)必律=3(2)J(-4)2="=4
(3)A/25=5(4)J(-3『=3
三、應(yīng)用拓展
例2、填空:當(dāng)a》0時(shí),_____;當(dāng)a<0時(shí),,/=,?并根據(jù)這一性
質(zhì)回答下列問題.
(1)若,?=a,則a可以是什么數(shù)?
(2)若必=-a,則a可以是什么數(shù)?
(3)J/>a,則a可以是什么數(shù)?
分析:;G=a(a20),...要填第一個(gè)空格可以根據(jù)這個(gè)結(jié)論,第二空格就不行,應(yīng)
變形,使“()2”中的數(shù)是正數(shù),因?yàn)?,?dāng)aWO時(shí),后4-a)?,那么-a》0.
(1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個(gè)填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知,/=
Ia|,而|a|要大于a,只有什么時(shí)候才能保證呢?a<0.
解:(1)因?yàn)镃=a,所以a20;
(2)因?yàn)?-a,所以aWO;
(3)因?yàn)楫?dāng)a20時(shí)=a,要使J/>a,即使a>a所以a不存在;當(dāng)a<0時(shí),J/=-a,
要使J/>a,即使-a>a,a<0綜上,a<0
例3、當(dāng)x>2,化簡J(x—2)2-J(1一2xJ.
分析:(略)
四、歸納小結(jié)
本節(jié)課應(yīng)掌握:G=a(a20)及其運(yùn)用,同時(shí)理解當(dāng)a<0時(shí),J/=-a的應(yīng)用拓
展.
五、布置作業(yè)
一、選擇題
22
A.0B.-C.4-D.以上都不對
33
2.a20時(shí),J/、,口產(chǎn)、-J/,比較它們的結(jié)果,下面四個(gè)選項(xiàng)中正確的是().
A.=yl(-a)2B.
C.J(-a).D.-\[a^>=7(-£Z)2
二、填空題
1.-V0.0004=.
2.若J礪是一個(gè)正整數(shù),則正整數(shù)m的最小值是.
三、綜合提高題
1.先化簡再求值:當(dāng)a=9時(shí),求a+Jl—Za+a?的值,甲乙兩人的解答如下:
甲的解答為:原式=a+d(l_a)2=a+(1-a)=1;
乙的解答為:原式=a+=a+(a-1)=2a-l=17.
兩種解答中,的解答是錯(cuò)誤的,錯(cuò)誤的原因是.
2.若|1995-a|+J"2000=a,求a-19952的值.
(提示:先由a-200020,判斷1995-a?的值是正數(shù)還是負(fù)數(shù),去掉絕對值)
3.若-3WxW2時(shí),試化簡|x-2|+J(X+3)2+&-10X+25。
答案:一、1.C2.A;二、1.-0.022.5;三、1.甲甲沒有先判定1-a是正數(shù)還是
負(fù)數(shù)
2.由己知得a--2000?20,22000
所以a-1995+,“一2000=a,y/a-2000=1995,a-2000=19952,
所以a-19952=2000.
3.10-x
板書設(shè)計(jì):
§16.1.二次根式(3)
情境引入例2學(xué)生板演
=a(a20).例3
例1練習(xí)小結(jié)
教學(xué)反思:
16.2二次根式的乘除(1)
教學(xué)內(nèi)容:4a?\[h—yfab(a20,b20),反之>/拓=夜?y/h(a20,b20)及其
運(yùn)用.
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解G,y/b=yfab(a)0,b》0),\[ab--/a?4b(a'O,b
》0),并利用它們進(jìn)行計(jì)算和化簡
過程與方法目標(biāo):由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出夜?嘉=,石(a20,b》0)并運(yùn)
用它進(jìn)行計(jì)算;?利用逆向思維,得出,石=6-y[b(a》0,bNO)并運(yùn)用它進(jìn)行解題和
化簡.
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精
神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
教學(xué)重難點(diǎn)關(guān)鍵
重點(diǎn):4a,4b=\[ah(a)0,b20),\[ab-\[a?4b(a>0,b20)及它們的運(yùn)
用.
難點(diǎn):發(fā)現(xiàn)規(guī)律,導(dǎo)出&?4b—4ab(a20,b^O).
關(guān)鍵:要講清ylab(a<O,b<O)=JZ、/,如J(-2)x(-3=J-?(-2)x-(-3)或
J(-2)x(-3)=J2x3=\/2XV3.
教法:1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建
立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體
現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;2,講練結(jié)合法:在
例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與算術(shù)平方根的乘法進(jìn)行類比,獲得解決問題的方法后配以精
講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的乘法法則,形成有效的學(xué)
習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流
與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他
檢,提高學(xué)生的素質(zhì)。
媒體設(shè)計(jì):PPT課件,展臺(tái)。
課時(shí)安排:1課時(shí)。
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請同學(xué)完成下列各題.
1.填空
(1)X邪-,—4x9=___;
(2)y/16X>/25=,J16x25=.
(3)7100X^6=,V100x36=.
參考上面的結(jié)果,用“>、<或="填空.
V4XV9,V16X725716x25,7100X
A/36V100x36
2.利用計(jì)算器計(jì)算填空
(1)&X百遍,(2)72x75M,
(3)V5XV6而,(4)V4X而,
(5)幣又回屈.
老師點(diǎn)評(píng)(糾正學(xué)生練習(xí)中的錯(cuò)誤)
二、探索新知
(1)被開方數(shù)都是正數(shù);
(2)兩個(gè)二次根式的乘除等于一個(gè)二次根式,?并且把這兩個(gè)二次根式中的數(shù)相乘,作
為等號(hào)另一邊二次根式中的被開方數(shù).
一般地,對二次根式的乘法規(guī)定為:4a?\fb=\[ab.(a20,b20)
反過來:=??血(a》0,b,0)
例L計(jì)算
(1)75XV7(2)(3)A/9XV27(4)
分析:直接利用G?a=箍(a,0,b20)計(jì)算即可.
解:⑴小義布=莊
⑵卜眄=即=百
(3)V9X>/27=V9X27=V92X3=9A/3
(4)義瓜=Jgx6=G
例2化簡
(1)79x16(2)716x81(3)781x100
(4)02y2(5)V54
分析:利用5/茄=五?4b(a》0,b20)直接化簡即可.
解:(1)79x16=79X716=3X4=12
(2)716x81=716XV81=4X9=36
(3)-81x100=聞X=9X10=90
(4)y)9x2y2=5/3^xyjx2y2=V?xx=3xy
(5)V54=5/9x6-5/3^XV6=3V6
三、鞏固練習(xí)
(1)計(jì)算:①V16Xa②3V6X2>/10③V5a,[gay
(2)化簡:V20;V18;V24;V54;712a2/72
四、應(yīng)用拓展
例3.判斷下列各式是否正確,不正確的請予以改正:
(1)J(T)x(-9)=Cx"
(2)JgX后=4義但X后=4侵X4=4/=86
解:(1)不正確.
改正:正而不5=X?=2X3=6
(2)不正確.
改正:X后=J^X25=VHI=J16>7=4幣
五、歸納小結(jié):本節(jié)課應(yīng)掌握:(1)4a?4b=\[ab=(a^O,b》0),\[ab-4a?4b
(a^O,b20)及其運(yùn)用.
六、布置作業(yè):一、選擇題
1.若直角三角形兩條直角邊的邊長分別為厲cm和巫cm,?那么此直角三角形斜邊
長是().
A.3\J2cmB.3>/3cmC.9cmD.27cm
2.化簡a的結(jié)果是().
A.yj-ClB.\[uC.-yj-ClD.-yfa
3.等式而IJ7=1=1一一1成立的條件是)
A.xelB.x》-lC.“WxWlD.xN1或xW?l
4.下列各等式成立的是().
A.4#>X2亞=8亞B.5百X4&=20石
C.473X3V2=7V5D.56X472=20>/6
二、填空題:1.71014=.
2.自由落體的公式為S=;gt2(g為重力加速度,它的值為lOm/s?),若物體下落的高
度為720m,則下落的時(shí)間是.
三、綜合提高題:1.一個(gè)底面為30cmX30cm長方體玻璃容器中裝滿水,?現(xiàn)將一部分
水例入一個(gè)底面為正方形、高為10cm鐵桶中,當(dāng)鐵桶裝滿水時(shí),容器中的水面下降了20cm,
鐵桶的底面邊長是多少厘米?
2.探究過程:觀察下列各式及其驗(yàn)證過程.
歸_22一-2(22—1)廠一I2
V22-l+22-l-V22-1+22-l-V+3
通過上述探究你能猜測出:(a>0),并驗(yàn)證你的結(jié)論.
答案:一、1.B2.C3.A4.D;二、1.13瓜2.12s
三、1.設(shè):底面正方形鐵桶的底面邊長為X,
貝ijx?X10=30X30X20,x2=30X30X2,
x=V30x30XV2=30V2.
驗(yàn)證:
板書設(shè)計(jì):
16.2二次根式的乘除(1)
情境引入例2學(xué)生板演
yja?y[h=\[ab(a20,b20),例3
反之=G?\[b(a20,b20).
例1練習(xí)小結(jié)
16.2二次根式的乘除(2)
教學(xué)內(nèi)容
\a_4a
(a,0,b>0),反過來(a20,b>0)及利用它們進(jìn)行計(jì)算和化簡.
4廠而
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解(aZO,b>0)(aNO,b>0)及利用它
和4呼
們進(jìn)行運(yùn)算.
過程與方法目標(biāo):利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動(dòng),發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并
用逆向思維寫出逆向等式及利用它們進(jìn)行計(jì)算和化筒.
情感與價(jià)值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精
神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
4a_[a[a_4a
教學(xué)重難點(diǎn)關(guān)鍵:1.重點(diǎn):理解(aZO,b>0),(a》O,b>0)及利用
它們進(jìn)行計(jì)算和化簡.
2.難點(diǎn)關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定.
教法:1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建
立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體
現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法:在
例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與商的平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并
進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的除法法則,形成有效的學(xué)
習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流
與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他
檢,提高學(xué)生的素質(zhì)。
媒體設(shè)計(jì):PPT課件,展臺(tái)。
課時(shí)安排:1課時(shí)。
教學(xué)過程:一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請同學(xué)們完成下列各題:
1.寫出二次根式的乘法規(guī)定及逆向等式.
2.填空
V3656
而W,
3.利用計(jì)算器計(jì)算填空:
乖>也V2_
(1),(2),(3),(4)也
忑=------
規(guī)律:言(3也但V2(2旦17
4;耳3:出5;引
二、探索新知
y/aa
一般地,對二次根式的除法規(guī)定:7rM(a20,b>0),
■SO,b>0)
反過來,
下面我們利用這個(gè)規(guī)定來計(jì)算和化簡一些題目.
分析:上面4小題利用/=(a》O,b>0)便可直接得出答案.
4b\b
解:(1)警=后="=2
分析:直接利用(a>0,b>0)就可以達(dá)到化簡之目的.
三、應(yīng)用拓展
例3.已知,日三且x為偶數(shù),求(1+x)-二£'+4的值.
Vx-67^6Vx2-l
分析:式子只有a>0,b>0時(shí)才能成立.
因此得到9-x20且x-6>0,即6<xW9,又因?yàn)閤為偶數(shù),所以x=8.
解A:由,題意?得《9-x>0,即<[x<9
x-6>0x>6
???6<xW9
???x為偶數(shù)
/.x=8
?,?原式=(1+X)
(X+1)0—1)
(1+x)J4..=J(l+x)(x—4)
J(x+1)
.,.當(dāng)x=8時(shí),原式的值=14x9=6.
四、歸納小結(jié)
y/a[a_y[a
本節(jié)課要掌握(a20,b>0)和(a20,b>0)及其運(yùn)用.
五、布置作業(yè)
一、選擇題
2/72v2
A.-V5B.-C.V2D.一
777
2.閱讀下列運(yùn)算過程:
1百垂)2275275
值一品6-3'75-75x75~5
2
數(shù)學(xué)上將這種把分母的根號(hào)去掉的過程稱作“分母有理化”,那么,化簡7己的結(jié)果是
).
A.2B.6C.-V6D.V6
3
二、填空題
1■分母有理化:(1)」產(chǎn)=________;(2)—^=_______;(3).
3V2V122V5
2.已知x=3,y=4,z=5,那么J五+的最后結(jié)果是
三、綜合提高題
1.有一種房梁的截面積是一個(gè)矩形,且矩形的長與寬之比為百:1,?現(xiàn)用直徑為
3715cm的一種圓木做原料加工這種房梁,那么加工后的房染的最大截面積是多少?
2.計(jì)算
(a>0)
__V3V3V10V2xV5V2V15
答案:-1?A2.C一、1.(1)——?;(2)——;(3)—產(chǎn)=--------T=-=-----2.---
662V52V523
三、1.設(shè):矩形房梁的寬為x(cm),則長為Gxcm,依題意,得:(百x)2+x2=(3厲)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025修訂后造價(jià)師聘用合同
- 2025物業(yè)管理服務(wù)合同(派遣制范本)
- 《臨床風(fēng)險(xiǎn)管理與教育》課件
- 2025年河北新勞動(dòng)合同樣本
- 縱隔積氣護(hù)理查房
- 《錯(cuò)誤的識(shí)別與解決》課件
- 2025年廣東清遠(yuǎn)市英德市興德投資有限公司招聘筆試參考題庫附帶答案詳解
- 2025年福建龍巖夏商盛龍教育科技有限公司招聘筆試參考題庫附帶答案詳解
- 2025年福建平潭自由貿(mào)易區(qū)兩岸發(fā)展有限公司招聘筆試參考題庫含答案解析
- 2025年中國東方航空股份有限公司北京分公司招聘筆試參考題庫含答案解析
- 小學(xué)三年級(jí)音樂《馬蘭謠》課件
- “當(dāng)代文化參與”學(xué)習(xí)任務(wù)群相關(guān)單元的設(shè)計(jì)思路與教學(xué)建議課件(共51張PPT)
- 提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率品管圈匯報(bào)書模板課件
- 同理心的應(yīng)用教學(xué)教材課件
- DB4102-T 025-2021海綿城市建設(shè)施工與質(zhì)量驗(yàn)收規(guī)范-(高清現(xiàn)行)
- 城市軌道交通安全管理隱患清單
- 錫膏使用記錄表
- 兒童保健學(xué)課件:緒論
- 中小學(xué)校園安全穩(wěn)定工作崗位責(zé)任清單
- 校園安全存在問題及對策
- NY∕T 309-1996 全國耕地類型區(qū)、耕地地力等級(jí)劃分
評(píng)論
0/150
提交評(píng)論