2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題_第1頁
2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題_第2頁
2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題_第3頁
2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題_第4頁
2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆河北省九校高三下學(xué)期第二次階段(期中)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,當(dāng)時,不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.2.某部隊在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種3.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.4.若函數(shù)在時取得極值,則()A. B. C. D.5.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)6.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.7.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達(dá)的時間為,小張離開家的時間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.8.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.9.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則的最小值為()A. B. C. D.10.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.12.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.14.函數(shù)的值域?yàn)開____.15.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.16.已知集合,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.18.(12分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學(xué)期望.19.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.21.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:22.(10分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學(xué)生的分析問題的能力和計算求解的能力,難度較難.2、B【解析】

分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.3、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計算.4、D【解析】

對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在時取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.5、D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個選項(xiàng)即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模長、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.6、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.7、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.8、A【解析】

根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.9、C【解析】

根據(jù)已知條件求得等差數(shù)列的通項(xiàng)公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項(xiàng)和中,前項(xiàng)的和最小,且.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式的基本量計算,考查等差數(shù)列前項(xiàng)和最值的求法,屬于基礎(chǔ)題.10、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對應(yīng)點(diǎn)即可判斷.【詳解】,故其對應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.11、A【解析】

首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.12、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點(diǎn)睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14、【解析】

利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。15、【解析】

根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點(diǎn)作面,垂足為,過點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時,,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.16、【解析】

根據(jù)交集的定義即可寫出答案。【詳解】,,故填【點(diǎn)睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.18、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海?。唬?);(3)分布列見詳解,數(shù)學(xué)期望為【解析】

(1)通過數(shù)據(jù)的觀察以及計算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個數(shù),然后可得結(jié)果.(3)計算退化林修復(fù)面積超過一萬公頃的地區(qū)中選兩個地區(qū)總數(shù),退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù)為,列出所有取值并計算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個地區(qū)中,任選一個地區(qū),該地區(qū)新封山育林面積占總面積的比值超過根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造林面積占總面積比超過,則(3)退化林修復(fù)面積超過一萬公頃有6個地區(qū):內(nèi)蒙、河北、河南、重慶、陜西、新疆,其中退化林修復(fù)面積超過六萬公頃有3個地區(qū):內(nèi)蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機(jī)變量X的分布列如下:【點(diǎn)睛】本題考查數(shù)據(jù)的處理以及離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,審清題意,細(xì)心計算,屬基礎(chǔ)題.19、(1)(2)【解析】

(1)零點(diǎn)分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當(dāng)時,不等式,即,所以在上有解即在上有解,所以,.【點(diǎn)睛】本題考查絕對值不等式解法,不等式有解求參數(shù),熟記零點(diǎn)分段,熟練處理不等式有解問題是關(guān)鍵,是中檔題.20、(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)椤?;含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)?、;同時含有和的子集共個,經(jīng)過變換后第一行仍為、;不含也不含的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個,經(jīng)過變換后第一行均變?yōu)?、;不含有的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因?yàn)?、、、,所以的所有可能取值的和不超過.【點(diǎn)睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎(chǔ)知識,考查運(yùn)算求解能力,綜合性強(qiáng),難度大.21、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論