2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題_第1頁
2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題_第2頁
2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題_第3頁
2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題_第4頁
2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆九師聯(lián)盟商開大聯(lián)考高三下學(xué)期模擬(六)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.總體由編號01,,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號為7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.012.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.44.設(shè)點(diǎn),P為曲線上動點(diǎn),若點(diǎn)A,P間距離的最小值為,則實(shí)數(shù)t的值為()A. B. C. D.5.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.6.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個(gè)陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.8.若的展開式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.9.設(shè),,是非零向量.若,則()A. B. C. D.10.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.11.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.12.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊(duì)進(jìn)入決賽爭奪冠軍,失利的兩隊(duì)爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊(duì)獲得冠軍的概率為______.14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a215.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.16.曲線在點(diǎn)處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.18.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點(diǎn),若,求的值.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動點(diǎn),求它到直線的距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個(gè)個(gè)體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.2、C【解析】

根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.3、B【解析】

設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.4、C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時(shí),,時(shí),,即,由題意,而,,∴,解得,.∴.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時(shí)對和的關(guān)系的處理是解題關(guān)鍵.5、C【解析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.6、D【解析】

先化簡,再根據(jù),且AB求解.【詳解】因?yàn)椋忠驗(yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.8、C【解析】展開式的通項(xiàng)為,因?yàn)檎归_式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).9、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.10、D【解析】

由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.11、B【解析】

計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力.12、B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)椋?,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.14、-2【解析】試題分析:∵a2考點(diǎn):等比數(shù)列性質(zhì)及求和公式15、0【解析】

求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..16、【解析】

對函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運(yùn)用直線的點(diǎn)斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點(diǎn)睛】本題考查運(yùn)用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點(diǎn)處的切線方程,關(guān)鍵在于求出在切點(diǎn)處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當(dāng)t≥1時(shí),f(x)在[t,t+1]上單調(diào)遞增,f(x)的最小值為f(t)=t-lnt;當(dāng)0<t<1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(huán)(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調(diào)遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因?yàn)?x+≥2,當(dāng)且僅當(dāng)x=時(shí)取“=”,所以a≤2-2.(3)因?yàn)閒(x)≥,所以a(x+1)≤2x2-xlnx.因?yàn)閤∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當(dāng)x∈時(shí),y′<0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞減;當(dāng)x∈時(shí),y′>0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時(shí)恒成立,所以M(x)在(0,1]上單調(diào)遞增.所以只需a≤M(1),即a≤1.所以實(shí)數(shù)a的最大值為1.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合問題,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于難題.18、(1)見解析(2)見證明【解析】

(1)對函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)椋?,令,得?①當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為.②當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;或時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為,.③當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞增;此時(shí),的減區(qū)間為.綜上,當(dāng)時(shí),的減區(qū)間為,增區(qū)間為:當(dāng)時(shí),的減區(qū)間為,增區(qū)間為.;當(dāng)時(shí),增區(qū)間為.(2)證明:由題意及導(dǎo)數(shù)的幾何意義,得由(1)中得.易知,導(dǎo)函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因?yàn)?,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性以及函數(shù)極值等即可,屬于??碱}型.19、(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,直接得到的直角坐標(biāo)方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點(diǎn),所對應(yīng)的參數(shù)分別為,,則,.,解得,則.【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標(biāo)與直角坐標(biāo)的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標(biāo)準(zhǔn)參數(shù)方程代入到對應(yīng)曲線的直角坐標(biāo)方程中,構(gòu)成關(guān)于的一元二次方程并結(jié)合韋達(dá)定理形式進(jìn)行分析求解.20、(1):,直線:;(2).【解析】

(1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論