




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆天津市寶坻區(qū)高三下期末考試(數(shù)學(xué)試題理)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,若的漸近線上存在點,使得經(jīng)過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.2.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,23.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.4.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,5.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.6.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.807.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-138.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.39.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.10.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}11.設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.12012.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列{an}的前n項和為Sn,若a214.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).15.已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為________.16.的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,已知,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當(dāng)與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:18.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設(shè)為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.20.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實數(shù)的值;(2)若函數(shù),則當(dāng),時,求證:①;②.21.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望22.(10分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.2.C【解析】
先求出集合U,再根據(jù)補集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關(guān)鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.3.B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.4.B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.5.A【解析】
先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.6.D【解析】
根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當(dāng)時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎(chǔ)題.7.B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.8.D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.9.B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.10.B【解析】
按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.11.B【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.12.C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式14.【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡,然后利用復(fù)數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.15.【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【詳解】設(shè),則,設(shè),則.當(dāng)時,,此時函數(shù)單調(diào)遞減;當(dāng)時,,此時函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,,,,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強.16.【解析】
利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)詳見解析.【解析】
(1)由短軸長可知,設(shè),,由設(shè)而不求法作差即可求得,將相應(yīng)值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當(dāng)直線斜率存在時,設(shè)出直線方程,與橢圓聯(lián)立,結(jié)合中點坐標公式,弦長公式,得到與的關(guān)系,將表示出來,結(jié)合基本不等式求最值,證明最后的結(jié)果【詳解】解:(1)由已知,得由,兩式相減,得根據(jù)已知條件有,當(dāng)時,∴,即∴橢圓的標準方程為(2)當(dāng)直線斜率不存在時,,不等式成立.當(dāng)直線斜率存在時,設(shè)由得∴,∴由化簡,得∴令,則當(dāng)且僅當(dāng)時取等號∴∵∴當(dāng)且僅當(dāng)時取等號綜上,【點睛】本題為直線與橢圓的綜合應(yīng)用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉(zhuǎn)化處理復(fù)雜的計算形式,要求學(xué)生計算能力過關(guān),為較難題18.(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當(dāng)時,,,當(dāng)時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎(chǔ)題.19.(1),(2)(3)【解析】
(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項公式,化簡式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯位相減法求和,可得結(jié)果.(3)計算出,代值計算并化簡,可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯位相減法求和,屬基礎(chǔ)題.20.(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時,,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點.在上取點,易得點關(guān)于對稱的點為,即為直線,所以的方程為,即,其斜率為.又因為,所以,,由題意,解得.(2)因為,所以.①令,則,則,且,,時,,單調(diào)遞減;時,,單調(diào)遞增.因為,所以,因為,所以存在,使時,,單調(diào)遞增;時,,單調(diào)遞減;時,,單調(diào)遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調(diào)遞增;時,,單調(diào)遞減,所以,即,因為,所以,所以時,,即時,.【點睛】本小題考查函數(shù)圖象的對稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識;考查學(xué)生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識.21.(Ⅰ);(Ⅱ)分布列見解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽化工大學(xué)《輕金屬冶金學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 哈爾濱鐵道職業(yè)技術(shù)學(xué)院《礦山采掘機械》2023-2024學(xué)年第二學(xué)期期末試卷
- 臨汾職業(yè)技術(shù)學(xué)院《中醫(yī)治未病與亞健康》2023-2024學(xué)年第二學(xué)期期末試卷
- 咸寧職業(yè)技術(shù)學(xué)院《建筑施工技術(shù)實訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津海運職業(yè)學(xué)院《電機學(xué)(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西質(zhì)量工程職業(yè)技術(shù)學(xué)院《精細有機合成化學(xué)及工藝學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波財經(jīng)學(xué)院《新聞采訪》2023-2024學(xué)年第二學(xué)期期末試卷
- 德宏師范高等??茖W(xué)?!队袡C化學(xué)A(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 菏澤學(xué)院《模擬電子技術(shù)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南藝術(shù)學(xué)院文華學(xué)院《形體與舞蹈》2023-2024學(xué)年第二學(xué)期期末試卷
- 《隋唐時期的中外文化交流》教案-2024-2025學(xué)年統(tǒng)編版(2024)初中歷史七年級下冊
- 2025年初級社會工作者綜合能力理論考試題(附答案)
- 糧食合伙收購協(xié)議書
- 第三屆南華大學(xué)醫(yī)學(xué)生臨床技能競賽評分標準高處
- 民用航空器駕駛員學(xué)校合格審定規(guī)則(完整版)
- 2025超市承包經(jīng)營合同
- 安全紀律教育主題班會
- 2025-2030中國橋梁檢查與維護行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 泡沫混凝土施工方案
- 麻家梁煤礦8.0Mt-a新井設(shè)計- 厚煤層富水頂板控水開采技術(shù)
- 2025年高空車作業(yè)考試題及答案
評論
0/150
提交評論