


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁中南民族大學(xué)
《Pthon數(shù)據(jù)分析與挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中,數(shù)據(jù)可視化的風(fēng)格應(yīng)根據(jù)不同的受眾和目的進(jìn)行選擇。以下關(guān)于數(shù)據(jù)可視化風(fēng)格選擇的說法中,錯誤的是?()A.數(shù)據(jù)可視化風(fēng)格可以分為簡潔明了、生動形象、專業(yè)嚴(yán)謹(jǐn)?shù)炔煌愋虰.數(shù)據(jù)可視化風(fēng)格的選擇應(yīng)考慮受眾的背景、知識水平和需求等因素C.數(shù)據(jù)可視化風(fēng)格的選擇可以根據(jù)具體的問題和數(shù)據(jù)特點(diǎn)來確定D.數(shù)據(jù)可視化風(fēng)格一旦確定就不能再進(jìn)行調(diào)整和改變,否則會影響用戶體驗(yàn)2、對于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來自多個數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實(shí)現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機(jī)器學(xué)習(xí)算法C.手動整合數(shù)據(jù),逐個處理D.不進(jìn)行數(shù)據(jù)融合,分別分析各個數(shù)據(jù)源的數(shù)據(jù)3、在數(shù)據(jù)挖掘中,若要對數(shù)據(jù)進(jìn)行分類,以下哪種算法對噪聲和缺失值具有較好的容忍性?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林4、在進(jìn)行數(shù)據(jù)挖掘任務(wù)時(shí),關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集。假設(shè)在一個超市購物數(shù)據(jù)集中,發(fā)現(xiàn)面包、牛奶和雞蛋經(jīng)常一起被購買。如果要進(jìn)一步提高關(guān)聯(lián)規(guī)則的實(shí)用性,以下哪個步驟可能是必要的?()A.增加更多商品種類到分析中B.考慮商品的促銷活動對購買行為的影響C.分析不同時(shí)間段的購買模式差異D.以上步驟都可能有幫助5、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問題。假設(shè)要分析信用卡欺詐檢測數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問題時(shí)更能提高模型對少數(shù)類(欺詐交易)的識別能力?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用6、對于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟(jì)增長趨勢。數(shù)據(jù)涵蓋多個指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況7、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對于小數(shù)據(jù)集無法使用8、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)9、在數(shù)據(jù)分析中,生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)要分析患者的生存時(shí)間與治療方案的關(guān)系,以下關(guān)于生存分析的描述,哪一項(xiàng)是不正確的?()A.可以計(jì)算生存曲線來直觀展示不同組患者的生存情況B.風(fēng)險(xiǎn)比(HazardRatio)用于比較不同組的風(fēng)險(xiǎn)程度C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用價(jià)值D.考慮刪失數(shù)據(jù)是生存分析的一個重要特點(diǎn)10、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive11、在數(shù)據(jù)分析中,若要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是12、當(dāng)分析一個社交媒體平臺上用戶的行為數(shù)據(jù),包括發(fā)布內(nèi)容的頻率、互動情況、關(guān)注對象等,以了解用戶的興趣和社交網(wǎng)絡(luò)結(jié)構(gòu)??紤]到數(shù)據(jù)的多樣性和復(fù)雜性,以下哪種數(shù)據(jù)可視化方式可能有助于更直觀地呈現(xiàn)分析結(jié)果?()A.柱狀圖B.折線圖C.餅圖D.社交網(wǎng)絡(luò)圖13、在進(jìn)行數(shù)據(jù)可視化時(shí),選擇合適的圖表類型要根據(jù)數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)你要展示不同年齡段人群的收入分布情況,以下關(guān)于圖表選擇的建議,哪一項(xiàng)是最恰當(dāng)?shù)模浚ǎ〢.使用折線圖,體現(xiàn)收入隨年齡的變化趨勢B.運(yùn)用柱狀圖,比較不同年齡段的收入水平C.選擇餅圖,展示各年齡段收入在總體中的占比D.采用雷達(dá)圖,綜合展示多個相關(guān)變量14、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來自不同系統(tǒng)的銷售數(shù)據(jù)和庫存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)15、假設(shè)我們要預(yù)測未來一段時(shí)間內(nèi)的股票價(jià)格,以下哪種數(shù)據(jù)分析方法可能不太適用?()A.時(shí)間序列分析B.線性回歸C.聚類分析D.神經(jīng)網(wǎng)絡(luò)16、在數(shù)據(jù)分析中,模型的可解釋性對于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項(xiàng)是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹,直觀展示決策過程C.只關(guān)注模型的預(yù)測準(zhǔn)確率,不考慮解釋性D.對模型的內(nèi)部工作原理不做任何解釋,讓用戶自行理解17、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個自變量對因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個變量與因變量的關(guān)系18、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來自不同數(shù)據(jù)庫的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問題B.可以使用ETL(Extract,Transform,Load)工具來實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過程中可能會引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性19、在進(jìn)行數(shù)據(jù)分析時(shí),有時(shí)候需要對多個數(shù)據(jù)集進(jìn)行合并和連接。假設(shè)我們有兩個數(shù)據(jù)集,分別包含客戶的基本信息和購買記錄,以下哪種連接方式可以根據(jù)共同的客戶ID將兩個數(shù)據(jù)集合并?()A.內(nèi)連接B.外連接C.左連接D.以上都是20、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)闡述數(shù)據(jù)倉庫中的元數(shù)據(jù)管理,說明元數(shù)據(jù)的定義、類型和重要性,以及如何有效地管理元數(shù)據(jù)。2、(本題5分)解釋什么是數(shù)據(jù)融合,說明其在多源數(shù)據(jù)整合中的重要性,并列舉至少兩種數(shù)據(jù)融合的方法和應(yīng)用場景。3、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘,包括圖像分類、目標(biāo)檢測等,說明其技術(shù)和應(yīng)用場景。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某電商平臺保存了不同促銷活動期間的用戶消費(fèi)行為數(shù)據(jù)、商品銷量變化、營銷成本等。研究怎樣借助這些數(shù)據(jù)評估促銷活動的效果和投資回報(bào)率。2、(本題5分)某農(nóng)產(chǎn)品企業(yè)積累了農(nóng)產(chǎn)品的種植數(shù)據(jù)、銷售數(shù)據(jù)、市場價(jià)格波動等信息。研究怎樣根據(jù)這些數(shù)據(jù)進(jìn)行種植規(guī)劃和市場風(fēng)險(xiǎn)預(yù)測。3、(本題5分)某在線音樂平臺的古典音樂類目擁有用戶數(shù)據(jù),包括收聽時(shí)長、曲目、演奏家、收藏行為等。分析用戶對不同演奏家的曲目收聽偏好和收藏特點(diǎn)。4、(本題5分)某超市的進(jìn)口食品類目記錄了銷售數(shù)據(jù),包括食品種類、產(chǎn)地、價(jià)格、促銷活動、消費(fèi)者收入水平等。分析不同產(chǎn)地和消費(fèi)者收入水平對進(jìn)口食品銷售和促銷活動效果的影響。5、(本題5分)某電商直播
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)合作合同協(xié)議
- 和個人簽訂家政合同協(xié)議
- 正規(guī)租廠房合同協(xié)議
- 毛衣服裝采購合同協(xié)議
- 2025精簡版合同借款協(xié)議全書
- 模特拍攝簽約合同協(xié)議
- 2025寫字樓租賃合同范文模板
- 2025年北京市房屋租賃合同范本下載
- 快遞員合同協(xié)議書范本
- 和外商簽合同協(xié)議
- 2024版跨境電商平臺與個人代理合作勞務(wù)合同2篇
- 全自動灌裝機(jī)操作培訓(xùn)方案
- 生成式人工智能技術(shù)知識產(chǎn)權(quán)歸屬
- 水泥罐車崗位安全操作規(guī)程(4篇)
- 醫(yī)療設(shè)備采購與評估方法
- 2024年上海古詩文大會小學(xué)試題庫(含答案)
- 生態(tài)環(huán)境數(shù)字化治理的杭州創(chuàng)新與經(jīng)驗(yàn)
- 社會調(diào)查委托合同三篇
- 癲癇性精神病的護(hù)理查房
- 建筑起重信號司索工試題庫(附答案)
- 中小學(xué)校保安服務(wù)方案(技術(shù)方案)
評論
0/150
提交評論