江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省安遠縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)2.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.3.已知雙曲線,過點作直線l,若l與該雙曲線只有一個公共點,這樣的直線條數(shù)為()A.1 B.2C.3 D.44.已知直線l經(jīng)過,兩點,則直線l的傾斜角是()A.30° B.60°C.120° D.150°5.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是A. B.C. D.6.若直線與直線垂直,則a的值為()A.2 B.1C. D.7.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.8.已知向量,.若,則()A. B.C. D.9.已知函數(shù)的導(dǎo)函數(shù)滿足,則()A. B.C.3 D.410.下列結(jié)論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.311.若直線l與橢圓交于點A、B,線段的中點為,則直線l的方程為()A. B.C. D.12.直線且的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.向量,,若,且,則的值為______.14.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.15.已知長軸長為,短軸長為的橢圓的面積為.現(xiàn)用隨機模擬的方法來估計的近似值,先用計算機產(chǎn)生個數(shù)對,,其中,均為內(nèi)的隨機數(shù),再由計算機統(tǒng)計發(fā)現(xiàn)其中滿足條件的數(shù)對有個,由此可估計的近似值為______________16.已知雙曲線與橢圓有公共的左、右焦點分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點,且線段的中點在另一條漸近線上,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.18.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和19.(12分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程20.(12分)設(shè)數(shù)列是公比為q的等比數(shù)列,其前n項和為(1)若,,求數(shù)列的前n項和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對所構(gòu)成的集合,21.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍22.(10分)已知等差數(shù)列的前和為,數(shù)列是公比為2的等比數(shù)列,且,(1)求數(shù)列和數(shù)列的通項公式;(2)現(xiàn)由數(shù)列與按照下列方式構(gòu)造成新的數(shù)列①將數(shù)列中的項去掉數(shù)列中的項,按原來的順序構(gòu)成新數(shù)列;②數(shù)列與中的所有項分別構(gòu)成集合與,將集合中的所有元素從小到大依次排列構(gòu)成一個新數(shù)列;在以上兩個條件中任選一個做為已知條件,求數(shù)列的前30項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當(dāng)時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.2、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率;故選:D3、D【解析】先確定雙曲線的右頂點,再分垂直軸、與軸不垂直兩種情況討論,當(dāng)與軸不垂直時,可設(shè)直線方程為,聯(lián)立直線與拋物線方程,消元整理,再分、兩種情況討論,即可得解【詳解】解:根據(jù)雙曲線方程可知右頂點為,使與有且只有一個公共點情況為:①當(dāng)垂直軸時,此時過點的直線方程為,與雙曲線只有一個公共點,②當(dāng)與軸不垂直時,可設(shè)直線方程為聯(lián)立方程可得當(dāng)即時,方程只有一個根,此時直線與雙曲線只有一個公共點,當(dāng)時,,整理可得即故選:D4、C【解析】設(shè)直線l的傾斜角為,由題意可得直線l的斜率,即,∵,∴直線l的傾斜角為,故選:.5、C【解析】設(shè)矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.6、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A7、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時,由,不妨設(shè),因為是等腰直角三角形,所以有,或舍去,故選:B8、A【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示直接計算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A9、C【解析】先對函數(shù)求導(dǎo),再由,可求出的關(guān)系式,然后求【詳解】由,得,因為,所以,所以,故選:C10、C【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當(dāng)時,當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當(dāng)且僅當(dāng)時取等號,故③錯誤;故選:C11、A【解析】用點差法即可獲解【詳解】設(shè).則兩式相減得即因為,線段AB的中點為,所以所以所以直線的方程為,即故選:A12、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)可求出,再根據(jù)向量垂直即可求出,即可得出答案.【詳解】因為,,所以,解得,又因為,所以,解得,所以.故答案為:.14、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關(guān)系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:15、【解析】由,,根據(jù)表示的數(shù)對對應(yīng)的點在橢圓的內(nèi)部,且在第一象限,求出滿足條件的點的概率,再轉(zhuǎn)化為幾何概型的面積類型求解【詳解】,,表示的數(shù)對對應(yīng)的點在橢圓的內(nèi)部,且在第一象限,其面積為,故,得故答案為:.【點睛】本題主要考查了幾何型概率應(yīng)用,解題關(guān)鍵是掌握幾何型概率求法,考查了分析能力和計算能力,屬于基礎(chǔ)題.16、【解析】求出橢圓焦點坐標(biāo),即雙曲線焦點坐標(biāo),即雙曲線的半焦距,再求出點坐標(biāo),利用中點在漸近線上得出的關(guān)系式,從而求得,然后可計算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點坐標(biāo)),,雙曲線的不在第一象限的漸近線方程為,,的中點坐標(biāo)為,它在漸近線上,所以,化簡得,又,所以,雙曲線方程為,則得,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時,表示出兩點坐標(biāo),由兩點連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時,設(shè),與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時,設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時,設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點;綜上所述:直線恒過定點.【點睛】思路點睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.18、(1)(2)【解析】(1)結(jié)合作差法可直接求解;(2)由錯位相減法可直接求解.【小問1詳解】當(dāng)時,;當(dāng)時,,當(dāng)時,滿足上式,所以;【小問2詳解】由(1)知,所以①,②,①-②得,所以.19、(1)(2)或【解析】(1)設(shè)出,表達出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當(dāng)直線斜率不存在時,直線為,此時弦長為,滿足題意;當(dāng)直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直線的方程為或.20、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結(jié)果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計算可解得,進而計算可得,即可判斷結(jié)果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對所構(gòu)成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項為公差為的等差數(shù)列,數(shù)列的前n項和.【小問2詳解】,,成等差數(shù)列,+=2,當(dāng)時,+=,2,不符題意舍去,當(dāng)時,.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有數(shù)對所構(gòu)成的集合為.21、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當(dāng)時,函數(shù),則令,得,,當(dāng)x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時,,故單調(diào)遞增,且;當(dāng)時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關(guān)鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論