2021-2022學(xué)年南昌市第二十八中學(xué)高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年南昌市第二十八中學(xué)高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年南昌市第二十八中學(xué)高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年南昌市第二十八中學(xué)高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年南昌市第二十八中學(xué)高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.2.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.3.已知拋物線的焦點(diǎn)與雙曲線的一個焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.4.已知函數(shù)是上的減函數(shù),當(dāng)最小時,若函數(shù)恰有兩個零點(diǎn),則實數(shù)的取值范圍是()A. B.C. D.5.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時,則圖中判斷框①處應(yīng)填入的是()A. B. C. D.6.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.已知集合,,則等于()A. B. C. D.8.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.9.()A. B. C. D.10.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或11.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,則()A. B. C. D.12.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.若實數(shù),滿足,則的最小值為__________.15.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____16.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進(jìn)入答題專區(qū),點(diǎn)擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學(xué)在這次活動中答對的題數(shù)分別是,則這五位同學(xué)答對題數(shù)的方差是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.18.(12分)已知拋物線C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過點(diǎn)F且斜率為k(k0)的直線交C于A,B兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.(1)求點(diǎn)G的軌跡方程;(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時,S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.19.(12分)已知橢圓的左、右焦點(diǎn)分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn),且過的直線與橢圓交于兩點(diǎn),設(shè)且.(1)求點(diǎn)的坐標(biāo);(2)求的取值范圍.20.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點(diǎn),求實數(shù)的取值范圍.21.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.22.(10分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.2.D【解析】

利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.3.A【解析】

由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點(diǎn)的弦長求離心率.弦過焦點(diǎn)時,可結(jié)合焦半徑公式求解弦長.4.A【解析】

首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時,,之后將函數(shù)零點(diǎn)個數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時,,函數(shù)恰有兩個零點(diǎn)等價于方程有兩個實根,等價于函數(shù)與的圖像有兩個交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.5.C【解析】

根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時,結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.此時輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.6.A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:7.B【解析】

解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8.D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當(dāng)時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時,實數(shù)的取值范圍是.故選D.9.B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.10.B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時,,∴,∴.②當(dāng)時,,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.11.B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.12.D【解析】

直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.8【解析】

根據(jù)偽代碼逆向運(yùn)算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點(diǎn)睛】本題考查算法中的語言,屬于基礎(chǔ)題.14.【解析】

由約束條件先畫出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過點(diǎn)時取到最小值,由可得,此時,所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.15.2【解析】

先由題意列出關(guān)于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設(shè)公比為,且,時,上式有最小值,故答案為:2.【點(diǎn)睛】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運(yùn)算,中檔題.16.2【解析】

由這五位同學(xué)答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】

(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點(diǎn)的坐標(biāo),通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點(diǎn)向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點(diǎn)睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應(yīng)用,屬于中檔題.18.(1)(2)當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時,S不是整數(shù).【解析】

(1)先求解導(dǎo)數(shù),得出切線方程,聯(lián)立方程得出交點(diǎn)G的軌跡方程;(2)先求解弦長,再分別求解點(diǎn)到直線的距離,表示出四邊形的面積,結(jié)合點(diǎn)G的橫坐標(biāo)為整數(shù)進(jìn)行判斷.【詳解】(1)設(shè),則,拋物線C的方程可化為,則,所以曲線C在點(diǎn)A處的切線方程為,在點(diǎn)B處的切線方程為,因為兩切線均過點(diǎn)G,所以,所以A,B兩點(diǎn)均在直線上,所以直線AB的方程為,又因為直線AB過點(diǎn)F(0,p),所以,即G點(diǎn)軌跡方程為;(2)設(shè)點(diǎn)G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯(lián)立,,整理得,所以,,解得,因為直線AB的斜率,所以,且,線段AB的中點(diǎn)為M,所以直線EM的方程為:,所以E點(diǎn)坐標(biāo)為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設(shè),因為p是質(zhì)數(shù),且為整數(shù),所以或,當(dāng)時,,是無理數(shù),不符題意,當(dāng)時,,因為當(dāng)時,,即是無理數(shù),所以不符題意,當(dāng)時,是無理數(shù),不符題意,綜上,當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時,S不是整數(shù).【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系,拋物線中的切線問題通常借助導(dǎo)數(shù)來求解,四邊形的面積問題一般轉(zhuǎn)化為三角形的面積和問題,表示出面積的表達(dá)式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19.(1);(2).【解析】

(1)設(shè)出的坐標(biāo),代入,結(jié)合在拋物線上,求得兩點(diǎn)的橫坐標(biāo),進(jìn)而求得點(diǎn)的坐標(biāo).(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設(shè)則,又,所以解得所以.(2)據(jù)題意,直線的斜率必不為所以設(shè)將直線方程代入橢圓的方程中,整理得,設(shè)則①②因為所以且將①式平方除以②式得所以又解得又,所以令,則所以【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線和橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查向量模的坐標(biāo)運(yùn)算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于難題.20.(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點(diǎn),矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.21.(1).(2).【解析】

(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點(diǎn)睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.22.(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論