




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省舒蘭市第九大區(qū)2024屆中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°2.把邊長(zhǎng)相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長(zhǎng)LG交AF于點(diǎn)P,則∠APG=()A.141° B.144° C.147° D.150°3.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°4.計(jì)算(1-)÷的結(jié)果是()A.x-1 B. C. D.5.計(jì)算(—2)2-3的值是()A、1B、2C、—1D、—26.關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是A. B. C. D.7.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣38.下列計(jì)算結(jié)果正確的是()A. B.C. D.9.下列計(jì)算錯(cuò)誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a410.在實(shí)數(shù),有理數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.一個(gè)圓錐的母線長(zhǎng)為5cm,底面半徑為1cm,那么這個(gè)圓錐的側(cè)面積為_____cm1.12.因式分解:3a3﹣3a=_____.13.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點(diǎn)E,連接OC,若OC=5,CD=8,則AE=______.14.如圖,在矩形ABCD中,E、F分別是AD、CD的中點(diǎn),沿著BE將△ABE折疊,點(diǎn)A剛好落在BF上,若AB=2,則AD=________.15.出售某種手工藝品,若每個(gè)獲利x元,一天可售出個(gè),則當(dāng)x=_________元,一天出售該種手工藝品的總利潤y最大.16.在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,∠AOB=60°,AC=6cm,則AB的長(zhǎng)是_____.三、解答題(共8題,共72分)17.(8分)探究:在一次聚會(huì)上,規(guī)定每?jī)蓚€(gè)人見面必須握手,且只握手1次若參加聚會(huì)的人數(shù)為3,則共握手次:;若參加聚會(huì)的人數(shù)為5,則共握手次;若參加聚會(huì)的人數(shù)為n(n為正整數(shù)),則共握手次;若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).拓展:嘉嘉給琪琪出題:“若線段AB上共有m個(gè)點(diǎn)(含端點(diǎn)A,B),線段總數(shù)為30,求m的值.”琪琪的思考:“在這個(gè)問題上,線段總數(shù)不可能為30”琪琪的思考對(duì)嗎?為什么?18.(8分)某海域有A、B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時(shí)刻船與B港口之間的距離CB的長(zhǎng)(結(jié)果保留根號(hào)).19.(8分)漳州市某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問題:請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有_▲人達(dá)標(biāo);若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?20.(8分)先化簡(jiǎn),再求值:,其中滿足.21.(8分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動(dòng)點(diǎn),PC∥AB,點(diǎn)M是OP中點(diǎn).(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當(dāng)∠BOP=時(shí),四邊形AOCP是菱形;②連接BP,當(dāng)∠ABP=時(shí),PC是⊙O的切線.22.(10分)每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對(duì)雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是;(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(4)若該市約有90萬人,請(qǐng)估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).23.(12分)先化簡(jiǎn),再求值:,其中滿足.24.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長(zhǎng).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點(diǎn):本題主要考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理點(diǎn)評(píng):解答本題的關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.2、B【解析】
先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個(gè)內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點(diǎn)睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).3、C【解析】
如圖,首先證明∠AMO=∠2,然后運(yùn)用對(duì)頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【詳解】如圖,對(duì)圖形進(jìn)行點(diǎn)標(biāo)注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.4、B【解析】
先計(jì)算括號(hào)內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點(diǎn)睛】本題主要考查分式的混合運(yùn)算,解題的關(guān)鍵是掌握分式混合運(yùn)算順序和運(yùn)算法則.5、A【解析】本題考查的是有理數(shù)的混合運(yùn)算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結(jié)果。解答本題的關(guān)鍵是掌握好有理數(shù)的加法、乘方法則。6、A【解析】
根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】∵關(guān)于x的一元二次方程x2﹣3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點(diǎn)睛】本題考查了根的判別式,解題的關(guān)鍵在于熟練掌握一元二次方程根的情況與判別式△的關(guān)系,即:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.7、A【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.8、C【解析】
利用冪的乘方、同底數(shù)冪的乘法、合并同類項(xiàng)及零指數(shù)冪的定義分別計(jì)算后即可確定正確的選項(xiàng).【詳解】A、原式,故錯(cuò)誤;B、原式,故錯(cuò)誤;C、利用合并同類項(xiàng)的知識(shí)可知該選項(xiàng)正確;D、,,所以原式無意義,錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了冪的運(yùn)算性質(zhì)及特殊角的三角函數(shù)值的知識(shí),解題的關(guān)鍵是能夠利用有關(guān)法則進(jìn)行正確的運(yùn)算,難度不大.9、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項(xiàng)錯(cuò)誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點(diǎn)睛】本題考查冪的乘方與積的乘方;合并同類項(xiàng);同底數(shù)冪的乘法;負(fù)整數(shù)指數(shù)冪.10、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點(diǎn):有理數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】分析:根據(jù)圓錐的側(cè)面展開圖為扇形,先計(jì)算出圓錐的底面圓的周長(zhǎng),然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長(zhǎng)=1π?5=10π,∴圓錐的側(cè)面積=?10π?1=10π(cm1).故答案為10π.點(diǎn)睛:本題考查了圓錐的側(cè)面積的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的弧長(zhǎng)為圓錐的底面周長(zhǎng),扇形的半徑為圓錐的母線長(zhǎng).也考查了扇形的面積公式:S=?l?R,(l為弧長(zhǎng)).12、3a(a+1)(a﹣1).【解析】
首先提取公因式3a,進(jìn)而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.13、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點(diǎn)E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.14、【解析】如圖,連接EF,∵點(diǎn)E、點(diǎn)F是AD、DC的中點(diǎn),∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點(diǎn)睛:本題考查了翻折變換的知識(shí),解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長(zhǎng),再利用勾股定理解答即可.15、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題進(jìn)行解答.解:∵出售某種手工藝品,若每個(gè)獲利x元,一天可售出(8-x)個(gè),
∴y=(8-x)x,即y=-x2+8x,
∴當(dāng)x=-=1時(shí),y取得最大值.
故答案為:1.16、3cm.【解析】
根據(jù)矩形的對(duì)角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點(diǎn)睛】本題主要考查矩形的性質(zhì)和等邊三角形的判定和性質(zhì),解本題的關(guān)鍵是掌握矩形的對(duì)角線相等且互相平分.三、解答題(共8題,共72分)17、探究:(1)3,1;(2);(3)參加聚會(huì)的人數(shù)為8人;拓展:琪琪的思考對(duì),見解析.【解析】
探究:(1)根據(jù)握手次數(shù)=參會(huì)人數(shù)×(參會(huì)人數(shù)-1)÷2,即可求出結(jié)論;
(2)由(1)的結(jié)論結(jié)合參會(huì)人數(shù)為n,即可得出結(jié)論;(3)由(2)的結(jié)論結(jié)合共握手28次,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論;拓展:將線段數(shù)當(dāng)成握手?jǐn)?shù),頂點(diǎn)數(shù)看成參會(huì)人數(shù),由(2)的結(jié)論結(jié)合線段總數(shù)為2,即可得出關(guān)于m的一元二次方程,解之由該方程的解均不為整數(shù)可得出琪琪的思考對(duì).【詳解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案為3;1.(2)∵參加聚會(huì)的人數(shù)為n(n為正整數(shù)),∴每人需跟(n-1)人握手,∴握手總數(shù)為.故答案為.(3)依題意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:參加聚會(huì)的人數(shù)為8人.拓展:琪琪的思考對(duì),理由如下:如果線段數(shù)為2,則由題意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m為正整數(shù),∴沒有符合題意的解,∴線段總數(shù)不可能為2.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:(1)根據(jù)各數(shù)量之間的關(guān)系,列式計(jì)算;(2)根據(jù)各數(shù)量之間的關(guān)系,用含n的代數(shù)式表示出握手總數(shù);(3)(拓展)找準(zhǔn)等量關(guān)系,正確列出一元二次方程.18、(1)60;(2)【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點(diǎn)D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案為60;(2)如圖,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:該船與B港口之間的距離CB的長(zhǎng)為(30+10)海里.19、(1)見解析;(2)1;(3)估計(jì)全校達(dá)標(biāo)的學(xué)生有10人【解析】
(1)成績(jī)一般的學(xué)生占的百分比=1-成績(jī)優(yōu)秀的百分比-成績(jī)不合格的百分比,測(cè)試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績(jī)優(yōu)秀的人數(shù).(2)將成績(jī)一般和優(yōu)秀的人數(shù)相加即可;(3)該校學(xué)生文明禮儀知識(shí)測(cè)試中成績(jī)達(dá)標(biāo)的人數(shù)=1200×成績(jī)達(dá)標(biāo)的學(xué)生所占的百分比.【詳解】解:(1)成績(jī)一般的學(xué)生占的百分比=1﹣20%﹣50%=30%,測(cè)試的學(xué)生總數(shù)=24÷20%=120人,成績(jī)優(yōu)秀的人數(shù)=120×50%=60人,所補(bǔ)充圖形如下所示:(2)該校被抽取的學(xué)生中達(dá)標(biāo)的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計(jì)全校達(dá)標(biāo)的學(xué)生有10人.20、1【解析】試題分析:原式第一項(xiàng)括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分后,兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,已知方程變形后代入計(jì)算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.21、(1)見解析;(2)①120°;②45°【解析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結(jié)論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點(diǎn)M是OP的中點(diǎn),∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點(diǎn)睛】本題是圓的綜合題目,考查了全等三角形的判定與性質(zhì)、平行四邊形的判定、切線的性質(zhì)、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),熟練掌握切線的性質(zhì)和平行四邊形的判定是解題的關(guān)鍵.22、(1)2000;(2)28.8°;(3)補(bǔ)圖見解析;(4)36萬人.【解析】分析:(1)將A選項(xiàng)人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項(xiàng)人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項(xiàng)人數(shù)所占百分比求得其人數(shù),據(jù)此補(bǔ)全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項(xiàng)人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項(xiàng)的人數(shù)為2000×25%=50
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CIQA 89-2024農(nóng)村電商運(yùn)營職業(yè)能力培養(yǎng)與評(píng)價(jià)規(guī)范
- T/CACE 0132-2024改性磷石膏混合料填筑應(yīng)用技術(shù)規(guī)程
- T/CI 465-2024質(zhì)量分級(jí)及“領(lǐng)跑者”評(píng)價(jià)要求多晶硅
- 商品砼運(yùn)輸承包合同10篇
- 幼兒園園長(zhǎng)授權(quán)責(zé)任協(xié)議書9篇
- 食堂規(guī)范化整治項(xiàng)目施工合同3篇
- 農(nóng)村轉(zhuǎn)讓土地的合同3篇
- 2025年溫州市商品銷售合同4篇
- 履約擔(dān)保委托保證合同律師擬定版本5篇
- 綠化運(yùn)營維護(hù)合同5篇
- 電磁場(chǎng)與電磁波電磁波的輻射
- 四羊方尊專題知識(shí)
- 【教案】 電源與電流 教學(xué)設(shè)計(jì) -2022-2023學(xué)年高二上學(xué)期物理人教版(2019)必修第三冊(cè)
- GB/T 40805-2021鑄鋼件交貨驗(yàn)收通用技術(shù)條件
- GB 18401-2003國家紡織產(chǎn)品基本安全技術(shù)規(guī)范
- 《科研創(chuàng)新實(shí)踐》課程教學(xué)大綱
- 報(bào)價(jià)單模板及范文(通用十二篇)
- 開發(fā)票申請(qǐng)單
- 五年級(jí)異分母分?jǐn)?shù)加減法第一課時(shí)課件
- 學(xué)校食堂操作流程圖
- 籃球比賽記錄表(CBA專用)
評(píng)論
0/150
提交評(píng)論