2023-2024學(xué)年高中數(shù)學(xué)人教A版2019課后習(xí)題第一章習(xí)題課 充分條件與必要條件的綜合應(yīng)用_第1頁
2023-2024學(xué)年高中數(shù)學(xué)人教A版2019課后習(xí)題第一章習(xí)題課 充分條件與必要條件的綜合應(yīng)用_第2頁
2023-2024學(xué)年高中數(shù)學(xué)人教A版2019課后習(xí)題第一章習(xí)題課 充分條件與必要條件的綜合應(yīng)用_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

習(xí)題課充分條件與必要條件的綜合應(yīng)用A級必備知識基礎(chǔ)練1.下列四個條件中,使a>b成立的充分不必要條件是()A.a>b1 B.a>b+1C.a2>b2 D.a>2b2.已知集合A={x|a2<x<a+2},B={x|x≤2,或x≥4},則A∩B=?的充要條件是()A.0≤a≤2 B.2<a<2C.0<a≤2 D.0<a<23.已知p:xa>0,q:x>1,若p是q的充分條件,則實數(shù)a的取值范圍為()A.{a|a<1} B.{a|a≤1}C.{a|a>1} D.{a|a≥1}4.(2021河北邢臺高一期中)若a>b>c,則()A.“x>b”是“x>a”的充分不必要條件B.“x>a”是“x>c”的充要條件C.“x>c”是“x>a”的必要不充分條件D.“x>b”是“x>c”的既不充分也不必要條件5.(2021山東單縣高一月考)方程x22x+a=0有實根的充要條件是,方程x22x+a=0有實根的一個充分不必要條件可以是.

6.命題p:|x|<a(a>0),命題q:1<x+1<4,若p是q的充分條件,則a的取值范圍是,若p是q的必要條件,則a的取值范圍是.

7.已知P={x|a4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,則實數(shù)a的取值范圍是.

8.已知條件p:x2+x6=0,條件q:mx+1=0,且q是p的充分不必要條件,求m的值.B級關(guān)鍵能力提升練9.一次函數(shù)y=mnx+1n的圖象同時經(jīng)過第一、三、四象限的必要不充分條件是(A.m>1,且n<1 B.mn<0C.m>0,且n<0 D.m<0,且n<010.(多選題)(2021山東五蓮教學(xué)研究室高一期中)一元二次方程ax2+4x+3=0(a≠0)有一個正根和一個負(fù)根的充分不必要條件是()A.a<0 B.a<2C.a<1 D.a<111.(多選題)(2021河北張家口高二期中)若不等式x2<a成立的充分條件是0<x<3,則實數(shù)a的取值范圍可以是()A.{a|a≥2} B.{a|a≥1}C.{a|3<a≤5} D.{a|a≤2}12.(2021江蘇南通高一期末改編)已知集合P={x|1≤x≤4},S={x|1m≤x≤1+m}.是否存在實數(shù)m,使得x∈P是x∈S的條件.若存在實數(shù)m,求出m的取值范圍;若不存在,請說明理由.

請從如下三個條件選擇一個條件補充到上面的橫線上:①充分不必要;②必要不充分;③充要.C級學(xué)科素養(yǎng)創(chuàng)新練13.(多選題)設(shè)計如圖所示的四個電路圖,若p:開關(guān)S閉合,q:燈泡L亮,則符合p是q的充要條件的電路圖是()習(xí)題課充分條件與必要條件的綜合應(yīng)用1.B因為a>b+1?ab>1?ab>0?a>b,所以a>b+1是a>b的充分條件.又因為a>b?ab>0a>b+1,所以a>b+1不是a>b的必要條件,故a>b+1是a>b成立的充分不必要條件.2.A由A∩B=?,得a-2≥-2,a+2≤43.D已知p:xa>0,x>a,q:x>1,若p是q的充分條件,則{x|x>a}?{x|x>1},所以a≥1.4.C由于x>bx>a,x>a?x>b,則“x>b”是“x>a”的必要不充分條件,A錯誤;由于x>a?x>c,x>cx>a,則“x>a”是“x>c”的充分不必要條件,B錯誤;由于x>cx>a,x>a?x>c,則“x>c”是“x>a”的必要不充分條件,C正確;由于x>b?x>c,x>cx>b,則“x>b”是“x>c”的充分不必要條件,D錯誤.故選C.5.a≤1a=1(答案不唯一)因為方程x22x+a=0有實根,所以Δ≥0,即(2)24a≥0,解得a≤1.反之,當(dāng)a≤1時,Δ≥0,則方程x22x+a=0有實根,所以a≤1是方程x22x+a=0有實根的充要條件.當(dāng)a=1時,方程x22x+1=0有實根x=1,而當(dāng)方程x22x+a=0有實根時不一定是a=1,所以a=1是方程x22x+a=0有實根的一個充分不必要條件.6.{a|a≤2}{a|a≥3}p:a<x<a,q:2<x<3,若p是q的充分條件,則{x|a<x<a}?{x|2<x<3},所以-a≥-2,a≤3,故a≤2.若p是q的必要條件,則{x|2<x<3}?{x|a<x<a7.{a|1≤a≤5}因為“x∈P”是“x∈Q”的必要條件,所以Q?P.所以a-4≤1,a+4≥3,即a的取值范圍是{a|1≤a≤5}.8.解設(shè)p,q表示的值分別為集合A,B.由條件p可解得x=2或x=3,則A={x|x=3,或x=2}.由條件q,當(dāng)m=0時方程無解,所以B=?,此時符合條件.當(dāng)m≠0時,解得x=1m(m≠0).若q是p的充分不必要條件,則需1m=2或1m=3,當(dāng)1m=2時,m=12;當(dāng)1m=3時,m=13.故m=19.B因為y=mnx+1n經(jīng)過第一、三、四象限,故mn>0,1n<0,即m>0,n<0,但此為充要條件,因此,觀察各選項知其必要不充分條件為mn<10.BC若方程ax2+4x+3=0(a≠0)有一個正根和一個負(fù)根,則Δ=16-12a>0,3a<0,解得a<11.ABC不等式x2<a成立的充分條件是0<x<3,設(shè)x2<a的解集為A,則{x|0<x<3}是集合A的真子集,∵A={x|x<2+a},∴2+a≥3,解得a≥1,則A,B,C均正確.故選ABC.12.解若選擇①,即x∈P是x∈S的充分不必要條件,則1m≤1+m且1-m≤1解得m≥3,故實數(shù)m的取值范圍是{m|m≥3}.若選擇②,即x∈P是x∈S的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論