




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省深圳市育才中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的公比為,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.將函數(shù)圖象上所有點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則()A. B.C. D.3.若用面積為48的矩形ABCD截某圓錐得到一個(gè)橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.4.已知雙曲線漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.45.如圖,四棱錐中,底面是邊長(zhǎng)為的正方形,平面,為底面內(nèi)的一動(dòng)點(diǎn),若,則動(dòng)點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上6.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣日影長(zhǎng)依次成等差數(shù)列,若冬至、大寒、雨水的日影長(zhǎng)的和為36.3尺,小寒、驚蟄、立夏的日影長(zhǎng)的和為18.3尺,則冬至的日影長(zhǎng)為()A4尺 B.8.5尺C.16.1尺 D.18.1尺7.已知,是橢圓的兩焦點(diǎn),是橢圓上任一點(diǎn),從引外角平分線的垂線,垂足為,則點(diǎn)的軌跡為()A.圓 B.兩個(gè)圓C.橢圓 D.兩個(gè)橢圓8.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱為世界三大數(shù)學(xué)家.有一類三角形叫做阿基米德三角形(過(guò)拋物線的弦與過(guò)弦端點(diǎn)的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.39.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.10.在中,已知點(diǎn)在線段上,點(diǎn)是的中點(diǎn),,,,則的最小值為()A. B.4C. D.11.某中學(xué)的校友會(huì)為感謝學(xué)校的教育之恩,準(zhǔn)備在學(xué)校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個(gè)正四棱錐,已知此正四棱錐的側(cè)面與底面所成的二面角為30°,側(cè)棱長(zhǎng)為米,則以下說(shuō)法不正確()A.底面邊長(zhǎng)為6米 B.體積為立方米C.側(cè)面積為平方米 D.側(cè)棱與底面所成角的正弦值為12.如圖,在三棱錐S-ABC中,E,F(xiàn)分別為SA,BC的中點(diǎn),點(diǎn)G在EF上,且滿足,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)坐標(biāo)為_(kāi)_________14.若數(shù)列滿足,,則__________15.?dāng)?shù)列滿足,,其前n項(xiàng)積為,則______16.已知曲線,則曲線在點(diǎn)處的切線方程為_(kāi)_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.(1)寫出曲線C的極坐標(biāo)方程;(2)已知直線與曲線C相交于A,B兩點(diǎn),求.18.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點(diǎn)M,使得二面角為,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由19.(12分)紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數(shù)量.現(xiàn)研究紅鈴蟲的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表Ⅰ中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來(lái)進(jìn)行擬合表Ⅰ溫度x/℃20222527293135產(chǎn)卵數(shù)y/個(gè)711212465114325(1)請(qǐng)借助表Ⅱ中的數(shù)據(jù),求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時(shí)的殘差;(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合(2)說(shuō)明哪個(gè)模型的擬合效果更好參考數(shù)據(jù):.附:回歸方程中,相關(guān)指數(shù).20.(12分)在△ABC中,角A,B,C所對(duì)的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀21.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對(duì)于任意x∈(1,7),e1-x+22.(10分)如圖1是,,,,分別是邊,上兩點(diǎn),且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先分析充分性:假設(shè)特殊等比數(shù)列即可判斷;再分析充分性,由條件得恒成立,再對(duì)和進(jìn)行分類討論即可判斷.【詳解】先分析充分性:在等比數(shù)列中,,所以假設(shè),,所以,等比數(shù)列為遞減數(shù)列,故充分性不成立;分析必要性:若等比數(shù)列的公比為,且是遞增數(shù)列,所以恒成立,即恒成立,當(dāng),時(shí),成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不成立,當(dāng),時(shí),成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不恒成立,當(dāng),時(shí),不恒成立,所以能使恒成立的只有:,和,,易知此時(shí)成立,所以必要性成立.故選:B.2、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長(zhǎng)度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A3、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項(xiàng)判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長(zhǎng)分別為,由矩形面積為48,得,對(duì)于選項(xiàng)B,D由于,不符合條件,不正確.對(duì)于選項(xiàng)A,,滿足題意.對(duì)于選項(xiàng)C,不正確.故選:A.4、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計(jì)算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.5、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因?yàn)榈酌媸沁呴L(zhǎng)為的正方形,則,,因?yàn)闉榈酌鎯?nèi)的一動(dòng)點(diǎn),所以可設(shè),因此,,因?yàn)槠矫?,所以,因此,所以由得,即,整理得:,表示圓,因此,動(dòng)點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問(wèn)題,靈活運(yùn)用空間向量的方法求解即可,屬于??碱}型.6、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影長(zhǎng)依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長(zhǎng)為16.1尺.故選:C7、A【解析】設(shè)的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點(diǎn)的軌跡是以為圓心,以為半徑的圓【詳解】是焦點(diǎn)為、的橢圓上一點(diǎn)為的外角平分線,,設(shè)的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),如圖,,,,由題意知是△的中位線,,點(diǎn)的軌跡是以為圓心,以為半徑的圓故選:A8、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當(dāng)過(guò)焦點(diǎn)的弦垂直于x軸時(shí),即時(shí),,即,故選:D9、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C10、C【解析】利用三點(diǎn)共線可得,由,利用基本不等式即可求解.【詳解】由點(diǎn)是的中點(diǎn),則,又因?yàn)辄c(diǎn)在線段上,則,所以,當(dāng)且僅當(dāng),時(shí)取等號(hào),故選:C【點(diǎn)睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運(yùn)算求解能力,屬于基礎(chǔ)題.11、D【解析】連接底面正方形的對(duì)角線交于點(diǎn),連接,則為該正四棱錐的高,即平面,取的中點(diǎn),連接,則的大小為側(cè)面與底面所成,設(shè)正方形的邊長(zhǎng)為,求出該正四棱錐的底面邊長(zhǎng),斜高和高,然后對(duì)選項(xiàng)進(jìn)行逐一判斷即可.【詳解】連接底面正方形的對(duì)角線交于點(diǎn),連接則為該正四棱錐的高,即平面取的中點(diǎn),連接,由正四棱錐的性質(zhì),可得由分別為的中點(diǎn),所以,則所以為二面角的平面角,由條件可得設(shè)正方形的邊長(zhǎng)為,則,又則,解得故選項(xiàng)A正確.所以,則該正四棱錐的體積為,故選項(xiàng)B正確.該正四棱錐的側(cè)面積為,故選項(xiàng)C正確.由題意為側(cè)棱與底面所成角,則,故選項(xiàng)D不正確.故選:D12、B【解析】利用空間向量基本定理結(jié)合已知條件求解【詳解】因?yàn)?,所以,因?yàn)镋,F(xiàn)分別為SA,BC的中點(diǎn),所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化成標(biāo)準(zhǔn)形式,結(jié)合焦點(diǎn)定義即可求解.【詳解】由,得,故拋物線的焦點(diǎn)坐標(biāo)為故答案為:14、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:715、【解析】根據(jù)數(shù)列的項(xiàng)的周期性,去求的值即可解決.【詳解】由,,可得,,,,,,由此可知數(shù)列的項(xiàng)具有周期性,且周期為4,第一周期內(nèi)的四項(xiàng)之積為1,所以數(shù)列的前2022項(xiàng)之積為故答案為:16、【解析】利用導(dǎo)數(shù)求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標(biāo)方程即可.(2)首先聯(lián)立得到,再求的長(zhǎng)度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標(biāo)方程為.(2)聯(lián)立方程組,消去得,設(shè)點(diǎn)A,B對(duì)應(yīng)的極徑分別為,,則,,所以.18、(1)證明見(jiàn)解析;(2)【解析】(1)取BC的中點(diǎn)O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標(biāo)系,假設(shè)點(diǎn)M存在,設(shè),求出M點(diǎn)坐標(biāo),然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點(diǎn)O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因?yàn)椋云矫?,因?yàn)槠矫嬷?,所以平面平?(2)由(1)問(wèn)知:兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間之間坐標(biāo)系.則,,,,若存在點(diǎn)M,則點(diǎn)M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點(diǎn)M,.【點(diǎn)睛】本題考查立體幾何探索是否存在的問(wèn)題,屬于中檔題.方法點(diǎn)睛:(1)判斷是否存在的問(wèn)題,一般先假設(shè)存在;(2)設(shè)出點(diǎn)坐標(biāo),作為已知條件,代入計(jì)算;(3)根據(jù)結(jié)果,判斷是否存在.19、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對(duì)數(shù),利用表中的數(shù)據(jù)即可求解;(2)分別計(jì)算模型①、②在時(shí)殘差;(3)根據(jù)相關(guān)指數(shù)的大小判斷摸型①、②的殘差平方和,再得出那個(gè)模型的擬合效果更好.【小問(wèn)1詳解】由,得,令,得,由表Ⅱ數(shù)據(jù)可得,,,所以,所以回歸方程為(或).【小問(wèn)2詳解】由題意可知,模型①在時(shí)殘差為,模型②在時(shí)殘差為.【小問(wèn)3詳解】因?yàn)?,即模型①的相關(guān)指數(shù)大于模型②的相關(guān)指數(shù),由相關(guān)指數(shù)公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數(shù)據(jù)更接近真實(shí)數(shù)據(jù),所以模型①的擬合效果更好.20、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問(wèn)1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問(wèn)2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形21、(1)(2)證明見(jiàn)解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問(wèn)題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問(wèn)1詳解】,當(dāng)時(shí),;當(dāng)時(shí),,故在上為增函數(shù),在上為減函數(shù),故.【小問(wèn)2詳解】因?yàn)椋十?dāng)時(shí),,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時(shí),,時(shí),,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點(diǎn)睛】思路點(diǎn)睛:不
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧工業(yè)大學(xué)《機(jī)械制造概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西旅游職業(yè)學(xué)院《視聽(tīng)廣告創(chuàng)意與制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 寶雞三和職業(yè)學(xué)院《焊接方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 青島航空科技職業(yè)學(xué)院《建筑作品分析與模型制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 渤海石油職業(yè)學(xué)院《人工智能導(dǎo)論A》2023-2024學(xué)年第二學(xué)期期末試卷
- 保安工作說(shuō)明書
- 2024年兒童動(dòng)畫項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年市政公共設(shè)施管理服務(wù)項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年山梨酸及山梨酸鉀項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2025年中鐵建大橋工程局集團(tuán)電氣化工程有限公司招聘筆試參考題庫(kù)含答案解析
- 數(shù)字化變革對(duì)企業(yè)會(huì)計(jì)信息質(zhì)量的影響機(jī)制研究
- 《經(jīng)濟(jì)政策分析》課件2
- 2025春 新人教版美術(shù)小學(xué)一年級(jí)下冊(cè)自然的饋贈(zèng)
- 庫(kù)管員筆試題及答案
- 自考《03203外科護(hù)理學(xué)》考試題庫(kù)大全-下(多選題)
- 精裝房營(yíng)銷策略研究-全面剖析
- 融資融券基本管理制度
- 公路工程質(zhì)量試題及答案
- 中央貿(mào)促會(huì)面試題及答案
- 產(chǎn)業(yè)鏈購(gòu)銷合同
- 昇騰DeepSeek解決方案
評(píng)論
0/150
提交評(píng)論