河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省博野縣2023年高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.2.以原點為對稱中心的橢圓焦點分別在軸,軸,離心率分別為,直線交所得的弦中點分別為,,若,,則直線的斜率為()A. B.C. D.3.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點4.在一次拋硬幣的試驗中,某同學(xué)用一枚質(zhì)地均勻的硬幣做了100次試驗,發(fā)現(xiàn)正面朝上出現(xiàn)了48次,那么出現(xiàn)正面朝上的頻率和概率分別為()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.485.在等差數(shù)列中,,則()A.9 B.6C.3 D.16.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.7.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知實數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.209.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項為()A. B.C. D.10.橢圓的離心率為()A. B.C. D.11.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.12.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點,,則()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓()中,成等比數(shù)列,則橢圓的離心率為_______.14.設(shè)直線,直線,若,則_______.15.已知橢圓:的左右焦點分別為,為橢圓上的一點,與橢圓交于.若△的內(nèi)切圓與線段在其中點處相切,與切于,則橢圓的離心率為_______16.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,已知,且當(dāng),時,(1)證明數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前項和18.(12分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.19.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列是首項為1,公比為2的等比數(shù)列,求數(shù)列的前項和.20.(12分)將離心率相同的兩個橢圓如下放置,可以形成一個對稱性很強(qiáng)的幾何圖形,現(xiàn)已知.(1)若在第一象限內(nèi)公共點的橫坐標(biāo)為1,求的標(biāo)準(zhǔn)方程;(2)假設(shè)一條斜率為正的直線與依次切于兩點,與軸正半軸交于點,試求的最大值及此時的標(biāo)準(zhǔn)方程.21.(12分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費者維權(quán)意識,組織方從參加活動的群眾中隨機(jī)抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機(jī)抽取2名群眾組成維權(quán)志愿者服務(wù)隊,求恰有一名女性的概率.22.(10分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.2、A【解析】分類討論直線的斜率存在與不存在兩種情況,聯(lián)立直線與曲線方程,再根據(jù),求解.【詳解】設(shè)橢圓的方程分別為,,由可知,直線的斜率一定存在,故設(shè)直線的方程為.聯(lián)立得,故,;聯(lián)立得,則,.因為,所以,所以.又,所以,所以,所以,.故選:A.【點睛】此題利用設(shè)而不求的方法,找出、、、之間的關(guān)系,化簡即可得到的值.此題的難點在于計算量較大,且容易計算出錯.3、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識點,即可得出結(jié)果.【詳解】選項A,由于此對數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).4、C【解析】頻率跟實驗次數(shù)有關(guān),概率是一種現(xiàn)象的固有屬性,與實驗次數(shù)無關(guān),即可得到答案.【詳解】頻率跟實驗次數(shù)有關(guān),出現(xiàn)正面朝上的頻率為實驗中出現(xiàn)正面朝上的次數(shù)除以總試驗次數(shù),故為.概率是拋硬幣試驗的固有屬性,與實驗次數(shù)無關(guān),拋硬幣正面朝上的概率為.故選:C5、A【解析】直接由等差中項得到結(jié)果.詳解】由得.故選:A.6、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.7、D【解析】根據(jù)空間直線與平面間的位置關(guān)系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D8、A【解析】根據(jù)約束條件作出可行域,再將目標(biāo)函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點,經(jīng)過時,,解得,所以此時取得最大值,即有最大值,即故選:A.9、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.10、A【解析】由橢圓標(biāo)準(zhǔn)方程求得,再計算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點睛】本題考查求橢圓的離心率,根據(jù)橢圓標(biāo)準(zhǔn)方程求出即可11、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進(jìn)行和兩項關(guān)系的比較,從而確定和的大小關(guān)系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.12、D【解析】根據(jù)空間向量線性運算的幾何意義進(jìn)行求解即可.【詳解】,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)成等比數(shù)列,可得,再根據(jù)的關(guān)系可得,然后結(jié)合的自身范圍解方程即可求出【詳解】∵成等比數(shù)列,∴,∴,∴,∴,又,∴故答案為:【點睛】本題主要考查橢圓的離心率的計算以及等比數(shù)列定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題14、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:15、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.16、【解析】由復(fù)數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因為復(fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)消去,只保留數(shù)列的遞推關(guān)系,根據(jù)題干提示來證明,注意證明首項不是零;(2)利用裂項求和來解決.【小問1詳解】證明:由題意,當(dāng)時,即,,整理,得,,,,數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,,則,,,,,各項相加,可得,當(dāng)n=1成立,故18、(1);(2).【解析】(1)由條件可得,即,從而可得答案.(2)由條件結(jié)合三角形的面積公式可得,再由余弦定理得,配方可得答案.【詳解】(1)因為,所以,所以所以,因為所以,因為,所以(2)由面積公式得,于是,由余弦定理得,即,整理得,故.19、(1)(2)【解析】(1)根據(jù)等差數(shù)列條件列方程,即可求通項公式;(2)先由等比數(shù)列通項公式求出,解得,分組求和即可.【小問1詳解】設(shè)等差數(shù)列的公差為,則,∴,由,∴,∴數(shù)列的通項公式為.【小問2詳解】∵數(shù)列是首項為1,公比為2的等比數(shù)列,∴,即,∴,∴.20、(1)(2);【解析】(1)設(shè),將點代入得出的標(biāo)準(zhǔn)方程;(2)聯(lián)立與直線的方程,得出兩點的坐標(biāo),進(jìn)而得出,再結(jié)合導(dǎo)數(shù)得出的最大值及此時的標(biāo)準(zhǔn)方程.【小問1詳解】由題意得:在第一象限的公共點為設(shè),則有:的標(biāo)準(zhǔn)方程為:;【小問2詳解】設(shè)y=kx+m則①,則②,,,又,由①有代入①有,令,則令,在單調(diào)遞增,在單調(diào)遞減,此時,則,代入②得,綜上:的最大值2,此時.21、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應(yīng)的值即為中位數(shù);(3)求出第一組中總?cè)藬?shù),得女性人數(shù),然后求得恰有一名女性的方法數(shù)和總的方法數(shù)后可得概率【小問1詳解】解:因為頻率分布直方圖的小矩形面積和為1,所以,解得,【小問2詳解】解:前2組頻率和為,前3組頻率和為,所以中位數(shù)在第3組,設(shè)中位數(shù)為,則,;【小問3詳解】解:第一組總?cè)藬?shù)為,男性人2人,則女性有4人,不妨記兩名男性為,四名女性為,則隨機(jī)抽取2名群眾的可能為,,,共15種方案,其中恰有一名女性的方法數(shù),共8種,所以第1組中隨機(jī)抽取2名群眾組成維權(quán)志愿者服務(wù)隊,求恰有一名女性的概率為22、(1)(2)或k=1.【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論