




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
STEREOCHEMISTRYOFCOMPLEXESPARTTHREESTEREOCHEMISTRYOFCOMPLEXESIntroduction3-1.GeometryofCoordinationCompounds3-2.IsomerisminMetalComplexesPARTTHREESTEREOCHEMISTRYOFCOMPLEXESSTEREOCHEMISTRYOFCOMPLEXES3-4.OpticalIsomerism3-5.OtherTypesofIsomerism3-3.GeometricalIsomerismPARTTHREESTEREOCHEMISTRYOFCOMPLEXESINTRODUCTIONIntroductionStereochemistryisthemostimportantbranchofchemistryconcernedwiththestructuresofcompounds.Sometimes,itisausefulvisualaidtouseasimplestickmodelstohelpyoustudythethree-dimensionalstructures,especiallythecomplicatedones.Somepeoplewouldthinkthatthissubjectbelongsinthescopeoforganicchemistry.INTRODUCTIONInfact,theattentionoforganicchemistryismainlyfocusedonthecarbonatomanditssurroundingfourgroups,andonlys,p,
orbitalsareusedfortheformationofbonds.However,ininorganicchemistry,especiallyincoordinationcompound,itisoftennecessarytoconsidernotonlythes,porbitals
butalsod,evenforbitals.Therefore,thestructuresarerelativelysimple.
INTRODUCTION
Manymetalsarefromthefourthtotheseventhrowelements,oftenthecoordinationnumbersbeingfromfourtotwelve.Sothestructureofcoordinatecomplexesaremorecomplicated.
3-1.GeometryofCoordinationCompounds
一.Typesofgeometry3-1.GeometryofCoordinationCompoundsManyobservedmetalcomplexeshaveagreatvarietyofstructures.
Forexamples(seeFigure3-1):Silvercomplexes——areoftenlinear一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsBerylliumcomplexes——areusually
tetrahedralIroncarbonylcompounds——havetrigonalbipyramidCobalt(Ⅲ)complexes——areinvariablyoctahedral;Tantalum(鉭-tan)formsaneight-coordinatedcomplex
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds
二.ThecommongeometryAlthoughavarietyofcoordinationnumbersandstructureshavebeenobservedinmetalcomplexes,theonlycommoncoordinationnumbersare
fourandsix;
thecommonstructurescorrespondingtothesecoordinationnumbersare
tetrahedral,squareplanarandoctahedral,respectively.
Inastudyofmetalcomplexesitsoonbecomesclearthattheoctahedralstructureisbyfarthemostcommonoftheseconfigurations.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds
Aninterestingandusefulapproachtothepredictionofstructureofcompoundsinwhichthecoordinationnumberofthecentralatomisknownisgivenbythe
VSEPR
(valenceshellelectron-pairrepulsion)theoryofGillespieandNyholm.
Oneconclusionfromthistheoryisthatingeneral,four-andsix-coordinatedcomplexeswillbetetrahedralandoctahedral,respectively.
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds
三.
Jahn-Tellerdistortion(briefly)Complexesoftransitionmetalssometimesdeviatefromthisrule,andthedeviationcanbeattributedtothepresenceofdelectrons.Crystalfieldtheory(CFT)providesperhapsthesimplestexplanationoftheeffectofdelectronsonthestructureofcomplexes.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsTheCFTclaimsthatdorbitalshaveaspecificgeometryandorientationinspaceandthatdelectronswillresideintheorbitalsthatarefarthestfromneighboringatomsormolecules.
Thepresenceofdelectronsinsix-orfour-coordinatedcomplexestendstocausedistortionoftheexpectedoctahedralortetrahedralconfiguration.
Thedistortionarisesbecauseligandswillavoidthoseareasaroundametalioninwhichthedelectronsreside.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsForexample,in[Ti(H2O)6]3+;[Cr(H2O)6]2+;[MnF6]3-;…etc.Theiroctahedralshapesarelikethefollowingshapes(Figure3-2),whicharecalledJahn-Tellerdistortions.Wehavelearneditbefore.
Thedistortionsthatresultfromthepresenceofdelectronsin"octahedral"complexesaresummarizedinTable3-1一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsWehaveconsideredthedistortionstooctahedralstructurethatresultfromthepresenceofdelectrons.
Tetrahedralstructuresarealsoobservedinmetalcomplexes,however,theyarelesscommonthanoctahedralanddistortedoctahedralconfigurations.Iffourligandssurroundametalatom,atetrahedralstructureisexpected.
Thepresenceofdelectronsmaythenresultindistortionofthetetrahadron.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsTwoexceptionsmustbenoted:(i)Aswehaveseen,four-coordinatedlow-spind8complexesaresquareplanar,asarefour-coordinatedd9andhigh-spind4complexes.
(ii)Metalcomplexescontaining0,5unpaired,and10delectronsareundistorted,aswasnotedpreviously.
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsAsinoctahedralcomplexestheplacementofelectronsinorbitalspointingbetweenligandsprovidesnoobservabledistortion.
Theremainingtetrahedralsystems,d3,d4,d8,andd9,...,shouldexhibitmarkedJahn-Tellerdistortions.Thustetrahedraldl,d2,d6,andd7complexesappeartobeundistorted.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsVeryfewexamplesofcompoundsofthistypeexist,however.
Low-spintetrahedralcomplexesneednotbediscussed,sincetherearenoexamplesofsuchcomplexes.
ThetetrahedralCFsplitting(Δt)isapparentlytoosmalltocausespinpairing.一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds
四.ThepredictionofgeometryAlthoughitispossibletopredictfairlyaccuratelythestereochemistryofcomplexionsinwhichthecoordinationnumberofthecentralatomisknown,itismuchmoredifficulttopredictthecoordinationnumberofthecentralatom.
Largecoordinationnumbersarefavoredbytheelectrostaticattractionofnegativelychargedligands(orpolarmolecules)forapositivemetalion.
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompounds
Covalentbondingtheories
predictingeneralthat
thegreaterthenumberofbondsformedtoanelement;thegreateristhestabilityoftheresultingcompound.Thetendencyforlargecoordinationnumbersisopposedby
steric(空間)andelectrostatic(orPauli)repulsionbetweenligands.
Nosimpleschemehasbeenpresentedtomakepredictionsfromthesecriteria.
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-1.GeometryofCoordinationCompoundsItmightbenoted,however,that:(i)
Thefirst-rowtransitionelementsarefrequentlysix-coordinated.(ii)
Four-coordinationisobservedprimarilyincomplexescontainingseverallargeanions,suchasClˉ,Brˉ,Iˉ,andO=,orbulkyneutralmolecules.
(iii)
Thesecond-andthird-rowtransitionelementsexhibitcoordinationnumbersaslargeaseight.
一.Typesofgeometry二.Thecommongeometry三.
Jahn-Tellerdistortion(briefly)四.Thepredictionofgeometry3-2.ISOMERISMINMETALCOMPLEXES3-2.ISOMERISMINMETALCOMPLEXES
Moleculesorionshavingthesamechemicalcompositionbutdifferentstructuresarecalled
isomers.
Thedifferenceinstructureisusuallymaintainedinsolution.
3-2.ISOMERISMINMETALCOMPLEXES3-2.ISOMERISMINMETALCOMPLEXES
Isomersare,therefore,notmerelydifferentcrystallineformsofthesamesubstance;forexample,therhombic(斜方的)andmonoclinic(單斜的)formsofsulfurarenotisomers.
Metalcomplexesexhibitseveraldifferenttypesofisomerism;thetwomostimportantaregeometricalandoptical.Othertypesalsowillbedescribed,andspecificexamplesforeachwillbegiven.3-2.ISOMERISMINMETALCOMPLEXES3-2.ISOMERISMIN…
Onefacttonoteisthat,ingeneral,onlycomplexeswhichreactslowlyarefoundtoexhibitisomerism.Thisisbecausecomplexesthatreactrapidlyoftenrearrangetoyieldonlythemoststableisomer(ChapterⅥ).3-2.ISOMERISMINMETALCOMPLEXES3-3GEOMETRICALISOMERISM
一.introductionInmetalcomplexestheligandsmayoccupydifferenttypesofpositionsaroundthecentralatom.
Sincetheligandsinquestionareusually
either
nexttooneanother(cis)
or
oppositeeachother(trans),thistypeofisomerismisoftenalsoreferredtoas
cis-transisomerism.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
SuchisomerismisnotpossibleforcomplexesofCN=2or3orfortetrahedralcomplexes.BecauseInthosesystems,allcoordinationpositionsareadjacenttooneanother.
However,
cis-transisomerismisverycommonforsquareplanarandoctahedralcomplexes,theonlytwotypestobediscussedhere.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMMethodsofpreparationandreactionswillbediscussedlater.
二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.Platinum(Ⅱ)complexesareverystableandslowtoreact;amongthemarenumerousexamplesofsquareplanargeometricalisomers.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMNodoubtthebestknownofthesearecis-andtrans-[Pt(NH3)2Cl2],IandlI.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMThechemistryofplatinum(II)complexeshasbeenstudiedextensively,particularlybyRussianchemists.
Manycompoundsofthetypescis-andtrans-[PtA2X2],[PtABX2],and[PtA2XY]areknown.(AandBareneutralligandssuchasNH3,py,P(CH3)3,andS(CH3)2;XandYareanionicligandssuchasCIˉ,Brˉ,Iˉ,NO2ˉ,andSCNˉ.)
Isomerscanbereadilydistinguishedbyx-raydiffractiontechniques.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
Othermethodsofdeterminingthestructuresofgeometricalisomersarediscussedlater.Afewcompoundsofplatinum(Ⅱ)containingfourdifferentligands,[PtABCD],areknown.RealizingthateitherB,C,orDgroupsmaybetranstoA,itisapparentthattherearethreeisomericformsforsuchacompound.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMThefirstcomplexofthistypetobeobtainedinthreeformswasthecation[PtNH3(NH2OH)pyNO2]+,whichhasstructuresIII,Ⅳ,andV.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
Inordertodesignatethestructureofaparticularisomer,itisconvenientto
placethetwosetsoftransligandsinseparateangularbrackets(<>).
Forexample,[M<AB><CD>]signifiesthatAandBareintranspositions,asmustbeCandD.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
Individualisomerscanbenamedby
thenumbersystemorbyusingthetransprefix,whichimpliesthatthefirsttwoligandsinthenameareintranspositions.Itfollowsthatthelasttwoligandsnamedarealsoinpositionstranstoeachother.Geometricalisomerismisalsofoundinsquareplanarsystemscontainingunsymmetricalbidentate(雙齒)ligands,[M(AB)2].
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
Glycinate(甘氨酸根)ion,NH2CH3COOˉ,issuchaligand;itcoordinateswithplatinum(Ⅱ)toformcis-andtrans-[Pt(gly)2]havingstructuresVIandVII.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMItisnotnecessarythattheattachedligandatomsdiffer;allthatisrequiredis
that
thetwohalvesofthechelatering(螯合環(huán))bedifferent.
三.
GeometricalisomerisminoctaheclralcompoundsGeometricalisomerisminoctaheclralcompoundsisverycloselyrelatedtothatinsquareplanarcomplexes.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMAmongthemostfamiliarexamplesofoctahedralgeometricalisomersare:theviolet(cis)andgreen(trans)formsofthedichlorotetraamminechromium(III)cations,whichhavestructuresⅧandIX.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMHundredsofisomericcompoundsofthetypes[MA2X2],[M(AA)2X2],[MA4XY],and[M(AA)2XY],whereM——Co(III),Cr(Ⅲ),Rh(Ⅲ),Ir(Ⅲ),Pt(Ⅳ),Ru(II),andOs(II),havebeenpreparedandcharacterized.
Afewisomersofthetype[MA3X3]areknown;thesecompoundscanformonlytwogeometricalisomers.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMForexample,theisomersof[Rh(py)3Cl3]havethestructuresXandⅪ.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMEitherthelikegroups
occupythecornersofoneoftheoctahedralfaces(cisisomer)ortheydonot(transisomer).
Thelargestnumberofgeometricalisomerswouldexistforacomplexofthetype[MABCDEF],whereineachligandisdifferent.
Suchaspeciescanexistin15differentgeometricalforms(eachformwouldalsohaveanopticalisomer,seelater).
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMThestudentmaywishtodrawallofthepossiblestructures.Theonlycompoundofthistypethathasbeenpreparedis——
[Pt(py)(NH3)(NO2)(Cl)(Br)(I)].
Itwasobtainedinthreedifferentformsbutnoattemptwasmadetoisolateallfifteenisomers.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISM
Unsymmetricalbidentateligands
giverisetogeometricalisomersinmuchthesamewayaswasdescribedearlierforsquareplanarcomplexes.Forexample,thecis-transisomersoftriglycinato-chromium(Ⅲ)havethestructuresXIIandXIII.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-3GEOMETRICALISOMERISMEachofthesecomplexesisopticallyactive,asisdiscussedinthefollowingsection.
一.introduction二.cis-transisomerisminsquareplanarsystemsofPt(Ⅱ)complexes.三.
Geometricalisomerisminoctaheclralcompounds3-4.OPTICALISOMERISM
一.IntroductionIthasalreadybeennecessarytomakesomereferencesorremarkstothephenomenonofopticalisomerism.
Abriefdiscussionisprovidedhere,alongwithafewadditionalexamplesofopticallyactivemetalcomplexes.
3-4.OPTICALISOMERISM一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMTheclassicalexperimentsin1848ofLouisPasteur,oneofthemostillustrious(杰出的)andhumaneofallmenofscience,showedthatsodium
ammoniumtartrate(酒石酸)existsintwodifferentforms.Opticalisomerismhasbeenrecognizedformanyyears.
Crystalsofthetwoformsdiffer,andPasteurwasabletoseparatethem
bythelaborioustaskof
handpicking.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMAqueoussolutionsofthetwoisomershadthepropertyofrotatingaplaneof
polarizedlight(abeamoflightvibratinginonlyoneplane)eithertotherightortotheleft.
Becauseofthispropertytheisomersaresaidtobeopticallyactiveandarecalledopticalisomers;oneisdesignatedasthedextro(d)isomerandtheotherasthe
levo(l)isomer.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMTheextentofrotationoftheplaneofpolarizedlightbythetwoisomersisexactlythesame;however,thedextro
isomerrotatestheplaneoflighttotheright,thelevo
isomertotheleft.
Itfollowsthat
therotationscanceleachotherinsolutionscontainingequalconcentrationsofthetwoisomers.Suchad,lmixtureiscalleda
racemicmixture(外消旋混合物).Sinceitssolutiondoesnotrotateaplaneofpolarizedlight,itisoptically
inactive.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISM
二.Judgmentofaopticallyactivecomplex
Whatpropertyofamoleculeorionrenders
it
opticallyactive?
Theanswerisasymmetry(lackofsymmetry).Thesymmetryrelationshipofopticalisomersissimilartothatoftherightandlefthands,orfeet,orgloves,orshoes.
一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMThereisarathersubtledifferencebetweenthestructures;therelativepositionsofthethumbandfingersoneachhandarethesame,yetthetwohandsaredifferent.Oneisthemirrorimageoftheother.
Ananalogoussituationmustexistifamoleculeorionistobeopticallyactive.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMInorderforamoleculeoriontobeopticallyactive,itmustnothaveaplaneofsymmetry,i.e.,
itshouldnotbepossibletodividetheparticleintotwoidenticalhalves.
Anothertestthatcanbeappliedinattemptingtodecidewhetheragivenstructurewillbeopticallyactiveisto
compareitwithitsmirrorimage.
Ifthestructureanditsmirrorimagearedifferent,
thestructurewillexhibitopticalactivity.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISM
三.Enantiomersand
raeemization
Thedandlisomersofagivencompoundarecalledenantiomorphsorenantiomers
(對映體),whichmeanoppositeforms.
Ingeneral,theyhaveidentical
chemicalandphysicalproperties.一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMTheydifferonlyinthedirectioninwhichtheyrotateaplaneofpolarizedlight.Arathersimpleinstrumentknownasa
polarimeter(旋光儀)isusedforthispurpose.
Thispropertypermitsthemtobereadilydetectedandtobedistinguished.
一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMItisinterestingtonotethatsometimesthephysiologicaleffectsofenantiomersareprofoundlydifferent.
Thusthel-nicotinethatoccursnaturallyintobaccoismuchmoretoxicthanthe
d-nicotinethatismadeinthelaboratory.Specificeffectssuchastheseareattributedtoasymmetricreactionsitesinbiologiealsystems.
一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMSinceenantiomersaresosimilar,andsinceinchemicalreactionsthetwoformsarealwaysproducedinequalamounts,specialtechniquesarerequiredtoseparatethetwo.
Thisseparationprocessiscalledresolution(拆分).
一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandraeemization四.Examples3-4.OPTICALISOMERISMSomeresolutionmethodswillbedescribedlater.
Often,asingleopticalisomerwillrearrangetogivea
racemicmixture.
Theprocessiscalled
racemization(外消旋作用).一.Introduction二.Judgmentofaopticallyactivecomplex三.Enantiomersandracemization四.Examples3-4.OPTICALISOMERISM
四.ExamplesThesimplestpossibleexampleofanasymmetricmoleculeisone
withatetrahedralstructurewhereinthecentralatomissurroundedbyfourdifferentatomsorgroups.Therearemanyexamplesofsuchmolecul
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025債務(wù)轉(zhuǎn)讓合同協(xié)議范本
- 2025企業(yè)內(nèi)部餐廳升級改造工程合同 施工合同協(xié)議書
- 2025二手設(shè)備轉(zhuǎn)讓合同的樣本
- 2025租賃合同印花稅計算方法探析
- 2025年食品安全試題
- 【清華大學】2024中國煤炭城市公正轉(zhuǎn)型調(diào)研報告基于兩個案例的研究報告
- 人教版八年級物理質(zhì)量與密度基礎(chǔ)知識點歸納總結(jié)模版
- 教師參加心理健康培訓心得體會模版
- 廣西項目可行性研究報告
- 專題八房地產(chǎn)金融融資方式與工具創(chuàng)新
- 2025甘肅陜煤集團韓城煤礦招聘250人筆試參考題庫附帶答案詳解
- SL631水利水電工程單元工程施工質(zhì)量驗收標準第1部分:土石方工程
- DL∕T 5370-2017 水電水利工程施工通 用安全技術(shù)規(guī)程
- 廣東省2024年中考數(shù)學試卷【附真題答案】
- (高清版)TDT 1075-2023 光伏發(fā)電站工程項目用地控制指標
- 監(jiān)控立桿基礎(chǔ)國家標準
- 德魯克的績效觀
- 那洛巴尊者傳
- 包材產(chǎn)品HACCP計劃
- SAP_PS-PS模塊配置和操作手冊
- 煤矸石綜合利用填溝造地復墾項目可行性研究報告-甲乙丙資信
評論
0/150
提交評論