




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
McGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterOne
RESEARCHINBUSINESSWhatisBusinessResearch?AsystematicInquirywhoseobjectiveistoprovideinformationtosolvemanagerialproblems.WhyStudyResearch?Researchprovidesyouwiththeknowledgeandskillsneededforthefast-paceddecision-makingenvironmentWhyManagersneedBetterInformationGlobalanddomesticcompetitionismorevigorousOrganizationsareincreasinglypracticingdatamining
anddatawarehousingTheValueofAcquiringResearchSkillsTogathermoreinformationbeforeselectingacourseofactionTodoahigh-levelresearchstudyTounderstandresearchdesignToevaluateandresolveacurrentmanagementdilemmaToestablishacareerasaresearchspecialistTypesofStudiesUsedtodoResearchReportingDescriptiveExplanatoryPredictiveDifferentStylesofResearchAppliedResearchPureResearch/BasicResearchWhatisGoodResearch?FollowingthestandardsofthescientificmethodPurposeclearlydefinedResearchprocessdetailedResearchdesignthoroughlyplannedLimitationsfranklyrevealedHighethicalstandardsappliedWhatisGoodResearch?(cont.)Followingthestandardsofthescientificmethod(cont.)Adequateanalysisfordecision-maker’sneedsFindingspresentedunambiguouslyConclusionsjustifiedResearcher’sexperiencereflectedTheManager-ResearcherRelationshipManager’sobligationsSpecifyproblemsProvideadequatebackgroundinformationAccesstocompanyinformationgatekeepersResearcher’sobligationsDevelopacreativeresearchdesignProvideanswerstoimportantbusinessquestionsManager-ResearcherConflictsManagement’slimitedexposuretoresearchManagerseesresearcherasthreattopersonalstatusResearcherhastoconsidercorporatecultureandpoliticalsituationsResearcher’sisolationfrommanagersWhenResearchShouldbeAvoidedWheninformationcannotbeappliedtoacriticalmanagerialdecisionWhenmanagerialdecisioninvolveslittleriskWhenmanagementhasinsufficientresourcestoconductastudyWhenthecostofthestudyoutweighsthelevelofriskofthedecisionMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterTwo
APPLYINGSCIENTIFICTHINKINGTO
MANAGEMENTPROBLEMSSourcesofKnowledgeEmpiricistsattempttodescribe,explain,andmakepredictionsthroughobservationRationalistsbelieveallknowledgecanbededucedfromknownlawsorbasictruthsofnatureAuthoritiesserveasimportantsourcesofknowledge,butshouldbejudgedonintegrityandwillingnesstopresentabalancedcaseTheEssentialTenetsofScienceDirectobservationofphenomenaClearlydefinedvariables,methods,andproceduresEmpiricallytestablehypothesesAbilitytoruleoutrivalhypothesesStatisticaljustificationofconclusionsSelf-correctingprocessWaystoCommunicateExpositiondescriptivestatementsthatmerelystateanddonotgivereasonArgumentallowsustoexplain,interpret,defend,challenge,andexploremeaningImportantArgumentsinResearchDeductionisaformofinferencethatpurportstobeconclusiveInductiondrawsconclusionsfromoneormoreparticularfacts TheBuildingBlocksofTheoryConceptsConstructsDefinitionsVariablesPropositionsandHypothesesTheoriesModelsUnderstandingConceptsAconceptisabundleofmeaningsorcharacteristicsassociatedwithcertainevents,objects,conditions,situations,andbehaviorsConceptshavebeendevelopedovertimethroughsharedusageUnderstandingConceptsThesuccessofresearchhingeson:howclearlyweconceptualizehowwellothersunderstandtheconceptsweuseWhatisaConstruct?Aconstructisanimageorideaspecificallyinventedforagivenresearchand/ortheory-buildingpurpose.TypesofVariablesIndependentDependentModeratingExtraneousInterveningTheRoleoftheHypothesisGuidesthedirectionofthestudyIdentifiesfactsthatarerelevantSuggestswhichformofresearchdesignisappropriateProvidesaframeworkfororganizingtheconclusionsthatresultWhatisaGoodHypothesis?Agoodhypothesisshouldfulfillthreeconditions:MustbeadequateforitspurposeMustbetestableMustbebetterthanitsrivalsTheValueofaTheoryNarrowstherangeoffactsweneedtostudySuggestswhichresearchapproacheswillyieldthegreatestmeaningSuggestsadataclassificationsystemSummarizeswhatisknownaboutanobjectofstudyPredictsfurtherfactsthatshouldbefoundMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterThree
THERESEARCHPROCESSTheManagement-Research
QuestionHierarchyManagementDilemmaMeasurementQuestionsInvestigativeQuestionsResearchQuestionsManagementQuestionsManagementDecision123456WorkingwiththeHierarchy
ManagementDilemmaThesymptomofanactualproblemNotdifficulttoidentifyadilemma,howeverchoosingonetofocusonmaybedifficult
WorkingwiththeHierarchy
ManagementQuestionCategoriesChoiceofpurposesorobjectiveGenerationandevaluationofsolutionsTroubleshootingorcontrolsituationWorkingwiththeHierarchy
FinetunetheresearchquestionExamineconceptsandconstructsBreakresearchquestionsintospecificsecond-and-third-levelquestionsVerifyhypotheseswithqualitytestsDeterminewhatevidenceanswersthevariousquestionsandhypothesisSetthescopeofyourstudyWorkingwiththeHierarchy
InvestigativeQuestionsQuestionstheresearchermustanswertosatisfactorilyarriveataconclusionabouttheresearchquestionWorkingwiththeHierarchyMeasurementQuestionsThequestionsweactuallyaskorextractfromrespondentsOtherProcessesintheHierarchyExplorationRecentdevelopmentsPredictionsbyinformedfiguresabouttheprospectsofthetechnologyIdentificationofthoseinvolvedintheareaAccountsofsuccessfulventuresandfailuresbyothersinthefieldResearchProcessProblemsTheFavoredTechniqueSyndromeCompanyDatabaseStrip-MiningUnresearchableQuestionsIll-DefinedManagementProblemsPoliticallyMotivatedResearchDesigningtheStudySelectaresearchdesignfromthelargevarietyofmethods,techniques,procedures,protocols,andsamplingplansResourceAllocation&BudgetsGuidestoplanabudgetProjectplanningDatagatheringAnalysis,interpretation,andreportingTypesofbudgetingRule-of-thumbDepartmentalorfunctionalareaTaskEvaluationMethodsExPostFactoEvaluationPriorEvaluationOptionAnalysisDecisionTheoryContentsofaResearchProposalStatementoftheresearchquestionBriefdescriptionofresearchmethodologyPilotTestingDatacollectionDatapreparationDataanalysisandinterpretationResearchreportingDataCollectionCharacterizedbyabstractnessverifiabilityelusivenessclosenesstothephenomenonTypesSecondarydataPrimarydataFinalStepsinResearchDataanalysisReportingtheresultsExecutivesummaryOverviewoftheresearchImplementationstrategiesfortherecommendationsTechnicalappendixMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterFour
THERESEARCHPROPOSALPurposeoftheResearchProposalTopresentthequestiontoberesearchedanditsimportanceTodiscusstheresearcheffortsofotherswhohaveworkedonrelatedquestionsTosuggestthedatanecessaryforsolvingthequestionTheResearchSponsorAllresearchhasasponsorinoneformoranother:Inacorporatesetting,managementsponsorsresearchInanacademicenvironment,thestudentisresponsibletotheclassinstructorWhataretheBenefitsoftheProposaltoaResearcher?Allowstheresearchertoplanandreviewtheproject’sstepsServesasaguidethroughouttheinvestigationForcestimeandbudgetestimatesTypesofResearchProposalsInternalExternal
ProposalComplexity3levelsofcomplexity:Theexploratorystudy
isusedforthemostsimpleproposalsThesmall-scalestudy
ismorecomplexandcommoninbusinessThelarge-scaleprofessionalstudy
isthemostcomplex,costingmillionsofdollarsHowtoStructuretheResearchProposal?CreateproposalmodulesPuttogethervariousmodulestotailoryourproposaltotheintendedaudienceModulesinaResearchProposalExecutiveSummaryProblemStatementResearchObjectivesLiteratureReviewImportanceoftheStudyResearchDesignDataAnalysisNatureandFormofResultsQualificationsofResearcherBudgetScheduleFacilitiesandSpecialResourcesProjectManagementBibliographyAppendicesWhattoincludeintheAppendices?Aglossaryofconcepts,constructs,anddefinitionsSamplesofthemeasurementinstrumentOthermaterialsthatreinforcethebodyoftheproposalEvaluatingtheResearchProposalProposalmustbeneatlywritteninappropriatewritingstyleMajortopicsshouldbeeasilyfoundandlogicallyorganizedProposalmustmeetspecificguidelinessetbythesponsorTechnicalwritingstylemustbeclearlyunderstoodandexplainedMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterFive
ETHICSIN
BUSINESSRESEARCHWhatareResearchEthics?EthicsarenormsorstandardsofbehaviorthatguidemoralchoicesaboutourbehaviorandourrelationshipswithothersThegoalistoensurethatnooneisharmedorsuffersadverseconsequencesfromresearchactivitiesEthicalTreatmentofParticipantsBegindatacollectionbyexplainingtotheparticipantthebenefitsexpectedfromtheresearchExplaintotheparticipantsthattheirrightsandwell-beingwillbeadequatelyprotected,andsayhowthiswillbedoneBecertainthatinterviewersobtaintheinformedconsentoftheparticipantDeceptionTheparticipantistoldonlypartofthetruthorwhenthetruthisfullycompromisedTopreventbiasingtheparticipantsbeforethesurveyorexperimentToprotecttheconfidentialityofathirdpartyIssuesRelatedtoProtectingParticipantsInformedconsentDebriefingRighttoPrivacy/ConfidentialityDataCollectioninCyberspaceEthicalIssuesrelatedtotheClientSponsornon-disclosurePurposenon-disclosureFindingsnon-disclosureRighttoqualityresearchEthicsRelatedtoSponsorSometimesresearcherswillbeaskedbysponsorstoparticipateinunethicalbehavior.Toavoidcoercionbysponsortheresearchershould:EducatesponsortothepurposeofresearchExplainresearcher’sroleExplainhowdistortionofthetruthleadstofutureproblemsIfnecessary,terminaterelationshipwithsponsorEthicalIssuesrelatedto
ResearchersandTeamMembersSafetyEthicalbehaviorofassistantsProtectionofanonymityTheDesignofResearchPart2DonaldCooperPamelaSchindlerChapter6BusinessResearchMethodsChapter6DesignStrategiesWhatisResearchDesign?AplanforselectingthesourcesandtypesofinformationusedtoanswerresearchquestionsAframeworkforspecifyingtherelationshipsamongthestudyvariablesAblueprintthatoutlineseachprocedurefromthehypothesistotheanalysisSlide6-1ClassificationsofDesignsExploratorystudyisusuallytodevelophypothesesorquestionsforfurtherresearchFormalstudyistotestthehypothesesoranswertheresearchquestionsposedSlide6-2MethodsofDataCollectionMonitoring,whichincludesobservational
studiesInterrogation/communicationstudySlide6-3PowertoProduceEffects
Slide6-4Inanexperiment,theresearcherattemptstocontroland/ormanipulatethevariablesinthestudyInanexpostfactodesign,theresearcherhasnocontroloverthevariables;theycanonlyreportwhathashappenedPurposeoftheStudyDescriptivetriestoexplainrelationshipsamongvariables
CausalstudyishowonevariableproduceschangesinanotherSlide6-5TheTimeDimensionCross-sectionalstudiesarecarriedoutonceandrepresentasnapshotofonepointintimeLongitudinalstudiesarerepeatedoveranextendedperiodSlide6-6TheTopicalScopeStatisticalstudiesattempttocaptureapopulation’scharacteristicsbymakinginferencesfromasample’scharacteristicsCasestudiesplacemoreemphasisonafullcontextualanalysisoffewereventsorconditionsandtheirinterrelationsSlide6-7TheResearchEnvironmentFieldconditionsLaboratoryconditionsSimulationsSlide6-8ASubjects’PerceptionsUsefulnessofadesignmaybereducedwhenpeopleinthestudyperceivethatresearchisbeingconductedSubjects’perceptionsinfluencetheoutcomesoftheresearchSlide6-9WhydoExploratoryStudies?ExplorationisparticularlyusefulwhenresearcherslackaclearideaoftheproblemsSlide6-10DataCollectionTechniquesQualitativetechniquesSecondarydataFocusgroups
Two-stagedesignSlide6-11Causation
TheessentialelementofcausationisA“produces〞B orA“forces〞BtooccurSlide6-12CausalStudyRelationshipsSymmetricalReciprocalAsymmetricalSlide6-13AsymmetricalRelationshipsStimulus-ResponseProperty-DispositionDisposition-BehaviorProperty-BehaviorSlide6-14AchievingtheIdealExperimentalDesign
Control RandomAssignment Matching Randomization ManipulationandcontrolofvariablesSlide6-15DonaldCooperPamelaSchindlerChapter7BusinessResearchMethodsChapter7SamplingDesignSelectionofElements
Population PopulationElementSampling
CensusSlide7-1WhatisaGoodSample?Accurate:absenceofbiasPreciseestimate:samplingerrorSlide7-2TypesofSamplingDesigns
ProbabilityNonprobabilitySlide7-3StepsinSamplingDesignWhatistherelevantpopulation?Whataretheparametersofinterest?Whatisthesamplingframe?Whatisthetypeofsample?Whatsizesampleisneeded?Howmuchwillitcost?Slide7-4ConceptstohelpunderstandProbabilitySampling
Standarderror ConfidenceintervalCentrallimittheoremSlide7-5ProbabilitySamplingDesigns
SimplerandomSystematicStratifiedProportionateDisproportionateClusterDoubleSlide7-6DesigningClusterSamplesHowhomogeneousaretheclusters?Shallweseekequalorunequalclusters?Howlargeaclustershallwetake?Shallweuseasingle-stageormultistagecluster?Howlargeasampleisneeded?Slide7-7Slide7-8NonprobabilitySamplingReasonstouseProceduresatisfactorilymeetsthesamplingobjectivesLowerCostLimitedTimeNotasmuchhumanerrorasselectingacompletelyrandomsampleTotallistpopulationnotavailableNonprobabilitySampling
ConvenienceSamplingPurposiveSamplingJudgmentSamplingQuotaSamplingSnowballSamplingSlide7-9DonaldCooperPamelaSchindlerChapter8BusinessResearchMethodsChapter8MeasurementMeasurementSelectingobservableempiricaleventsUsingnumbersorsymbolstorepresentaspectsoftheeventsApplyingamappingruletoconnecttheobservationtothesymbolSlide8-1WhatisMeasured?
Objects: Thingsofordinaryexperience Somethingsnotconcrete Properties:characteristicsofobjectsSlide8-2CharacteristicsofDataClassificationOrderDistance(intervalbetweennumbers)Originofnumberseries7-4Slide8-3DataTypes
Order Interval OriginNominal none
none noneOrdinal yes unequal noneInterval yes equalor none unequalRatio yes equal zeroSlide8-4SourcesofMeasurementDifferencesRespondentSituationalfactorsMeasurerorresearcherDatacollectioninstrumentSlide8-5Validity
ContentValidityCriterion-RelatedValidityPredictiveConcurrentConstructValiditySlide8-6Reliability
StabilityTest-retestEquivalenceParallelformsInternalConsistencySplit-halfKR20Cronbach’salphaSlide8-7PracticalityEconomyConvenienceInterpretability7-9Slide8-8DonaldCooperPamelaSchindlerChapter9BusinessResearchMethodsChapter9MeasurementScalesWhatisScaling?AssigningnumberstoindicantsofthepropertiesofobjectsSlide9-1TypesofResponseScalesSlide9-2RatingScalesRankingScalesCategorizationTypesofRatingScalesSimplecategoryMultiplechoice,singleresponseMultiplechoice,multipleresponseLikertscaleSemanticdifferentialNumericalMultipleratingFixedsumStapelGraphicratingSlide9-3RatingScaleErrorstoAvoidLeniency NegativeLeniency PositiveLeniencyCentralTendencyHaloEffectSlide9-4TypesofRankingScalesPaired-comparisonForcedRankingComparativeSlide9-5DimensionsofaScaleUnidimensionalMultidimensionalSlide9-6ScaleDesignTechniquesArbitraryConsensusItemAnalysisCumulativeFactorSlide9-7DonaldCooperPamelaSchindlerChapter10BusinessResearchMethodsChapter10SourcesandCollectionofDataExploratoryResearchSlide10-1ExpandunderstandingofmanagementdilemmaExpandunderstandingofresearchquestionIdentifyplausibleinvestigativequestionsLevelsofInformationSlide10-2PrimarysourcesSecondarysourcesTertiarysourcesTypesofInformationSourcesIndexesandBibliographiesDictionariesEncyclopediasHandbooksDirectoriesSlide10-3SecondarySourcesbyTypeIndexesandBibliographiestofindorlocatebooksorarticlestofindauthors,topicstouseinonlinesearchesSlide10-4Dictionariestoidentifyjargonofanindustry--usedforonlinesearchestoidentifybell-weathereventsinanindustrytoidentifyknowledgeablepeopletointerviewtoidentifyorganizationsofinfluenceSecondarySourcesbyTypeSlide10-5EncyclopediasToidentifyhistoricalorbackgroundinformationTofindcriticaldateswithinanindustryTofindeventsofsignificancetotheindustry,companySecondarySourcesbyTypeSlide10-6HandbooksTofindfactsrelevanttotopicToidentifyinfluentialindividualsthroughsourcecitationsSecondarySourcesbyTypeSlide10-7DirectoriesToidentifyinfluentialpeopleandorganizationstofindaddresses,e-mail,othercontactinfoonthesepeopleandorganizationsSecondarySourcesbyTypeSlide10-8EvaluatingInformationSourcesPurposeScopeAuthorityAudienceFormatSlide10-9EvaluatingSourcesPurposewhattheauthorisattemptingtoaccomplishidentifyhiddenagenda(s)identifydirectionofbiasSeekbothbiasedandunbiasedsourcesSlide10-10EvaluatingSourcesScopeIdentifydatesofinclusionandexclusionIdentifysubjectsofinclusionandexclusionSlide10-11EvaluatingSourcesAuthorityIdentifybackgroundofauthorCredentials:educational,professionalExperience:duration,setting,levelIdentifythelevelofscholarshipincontentfootnotes,endnotesSlide10-12EvaluatingSourcesAudienceIdentifyknowledgelevelandbackgroundIdentifyorientationandbiasSeekbiasedandunbiasedsourcesSlide10-13EvaluatingSourcesFormatOrderofcontentVersatilityofuseIndexed?Searchable?Downloadable?Slide10-14SearchingDatabasesSelectanappropriatedatabaseABI/InformBusinessInfoSuiteBusinessSourceDowJonesInteractiveNexis-LexisUniverseSlide10-15SearchingDatabasesSelectanappropriatedatabaseConstructasearchquerySlide10-16SearchingDatabasesConstructasearchqueryBooleanOperatorsOR-forplurals,synonymsspellingvariationswomanORwomenAND-narrowsyoursearchadvertisingANDbibliographyNOT/ANDNOT-eliminatestermsawardNOTtrophyADJ-orderkeytermswithinyoursearchassistedADJlivingSlide10-17SearchingDatabasesConstructasearchqueryBooleanOperators?or*-totruncateatermnur*fornurse,nursing“X〞forphrasesearching“advertisingcampaigns〞LimitersdatessourcetypelanguageSlide10-18SearchingDatabasesSelectanappropriatedatabaseConstructasearchqueryReviewandevaluatesearchresultsRelevancyQuantityTimelinessSlide10-19SearchingDatabasesModifythesearchqueryCheckbibliographynewkeywords,otherauthorsLinkdirectlyAdaptoriginalsearchqueryCreatenewsearchquerywithnewkeywordsSearchforotherworksbysameauthor(s)Slide10-20SearchingDatabasesModifythesearchqueryDocumentfindingsPrintordownloadsearchfindingsDownloadfull-textsourcePrintfull-textsourceSlide10-21SearchingDatabasesModifythesearchqueryDocumentfindingsRetrieveorrequestarticlesSearchonlinecatalogInterlibraryloanInterlibrarydeliverySlide10-22WebSearchesDefineyourquestionSelectSearchEngineorDirectoryDannySullivan’sSearchEngineWatchGregNotess〞SearchEngineShowdownSlide10-23WebSearchesDetermineSearchOptionsandProtocolConstructsearchqueryReviewsearchresultsSlide10-24WebSearchesModifysearchqueryandsearchagainSearchusingadifferentsearchengineDocumentyourfindingssearchfindingsfulltextsourcesSupplementwebresultsfromothersourcesSlide10-25SpecificWebSearchesKnown-ItemWhoWhereWhatSlide10-26GovernmentSourcesGovernmentorganizationsLaws,regulations,courtdecisionsGovernmentstatisticsSlide10-27MiningInternalSourcesDatawarehouseDatamartDataminingPatterndiscoveryPredictingtrendsandbehaviorsSlide10-28DataMiningTechniques
DataVisualizationDimensionsMeasurementsHierarchiesClusteringNeuralNetworksTreeModelsClassificationSlide10-29DataMiningTechniques(cont.)
Estimation Association Market-BasketAnalysisSequenceBasedAnalysisFuzzyLogicGeneticAlgorithmsFractal-BasedTransformationSlide10-30DataMiningProcessSampleExploreModifyModelAssessSlide10-31DonaldCooperPamelaSchindlerChapter11BusinessResearchMethodsChapter11SurveyMethods:CommunicatingwithRespondentsCommunicationApproachImpactstheResearchProcessCreationandselectionofmeasurementquestionsSamplingissues,drivecontactandcallbackproceduresInstrumentdesign,whichincorporatesattemptstoreduceerrorandcreaterespondent-screeningproceduresDatacollectionprocesses,whichcreatetheneedforfollow-upproceduresandpossibleinterviewertrainingSlide11-1PersonalInterviewRequirementsforsuccessAvailabilityoftheneededinformationfromtherespondentAnunderstandingbytherespondentofhisorherroleAdequatemotivationbytherespondenttocooperateSlide11-2PersonalInterviewToIncreaseRespondent’sReceptivenesstheymustbelievetheexperiencewillbepleasantandsatisfyingthinkansweringthesurveyisanimportantandworthwhileuseoftheirtimehaveanymentalreservationssatisfiedSlide11-3TheInterviewIntroductionEstablishagoodrelationshipGatherthedataProbingRecordtheinterviewSlide11-4ProbingStylesAbriefassertionofunderstandingandinterestAnexpectantpauseRepeatingthequestionRepeatingtherespondent’sreplyAneutralquestionorcommentQuestionclarificationSlide11-5InterviewProblems
NonresponseerrorResponseerrorInterviewererrorCostSlide11-6TelephoneInterviewTypesComputer-assistedtelephoneinterviewingComputer-administeredtelephonesurveyProblemsNoncontactrateRefusalrateSlide11-7Self-AdministeredSurveysTypesMailsurveyComputer-delivered InterceptstudiesDisadvantagesLargenonresponseerrorCannotobtaindetailedorlargeamountsofinformationSlide11-8ConcurrentTechniquestoImproveMailResponseReduceLengthSurveySponsorshipReturnEnvelopesPostagePersonalizationAnonymitySize,Color,andReproductionMoneyIncentivesDeadlineDatesCoverLettersSlide11-9OutsourcingSurveyServicesResearchFirmsProvideCentralized-locationinterviewingFocusgroupfacilitiesTrainedstaffwithexperienceData-processingandstatisticalanalysiscapabilitiesAccesstopoint-of-saledataPanelsSlide11-10DonaldCooperPamelaSchindlerChapter12BusinessResearchMethodsChapter12InstrumentsforRespondentCommunicationInstrumentDesignProcessPhase1:DevelopingtheinstrumentdesignstrategyPhase2:ConstructingandrefiningthemeasurementquestionsPhase3:DraftingandrefiningtheinstrumentSlide12-1DevelopingtheInstrumentDesignStrategyManagement-ResearchQuestionHierarchy:Themanagementproblem/questionResearchquestion(s)InvestigativequestionsMeasurementquestionsSlide12-2StrategicConcernsofInstrumentDesignWhattypeofdataisneededtoanswerthemanagementquestion?Whatcommunicationapproachwillbeused?Shouldthequestionsbestructured,unstructured,orsomecombination?Shouldthequestionsbedisguisedorundisguised?Slide12-3WaystoInteractwiththeRespondentPersonalinterviewTelephoneMailComputerSlide12-4Slide12-5TypesofMeasurementQuestions?TargetClassificationAdministrativeAppropriateQuestionContentShouldthisquestionbeasked?Isthequestionofproperscopeandcoverage?Cantherespondentadequatelyanswerthisquestion,asasked?Willtherespondentwillinglyanswerthisquestion,asasked?Slide12-6HowtoTesta
Respondent’sAppropriatenessFilterquestionsScreenquestionsSlide12-7QuestionWordingCriteriaIsthequestionstatedintermsofasharedvocabulary?Doesthequestioncontainvocabularywithasinglemeaning?Doesthequestioncontainunsupportedassumptions?Isthequestioncorrectlypersonalized?Areadequatealternativespresentedwithinthequestion?Slide12-8WhatDictates
YourResponseStrategy?CharacteristicsofrespondentsNatureofthetopic(s)beingstudiedTypeofdataneededYouranalysisplanSlide12-9TypesofResponseQuestionsFree-responseDichotomousMultiple-choiceChecklistRatingRankingSlide12-10GuidelinestoRefiningtheInstrumentAwakentherespondent'sinterestUsebufferquestionsasaguidetorequestsensitiveinformationUsethefunnelapproachtomovetomorespecificquestionsSlide12-11ImprovingSurveyResultsPretestingisanestablishedpracticefordiscoveringerrorsandusefulfortrainingtheresearchteamSlide12-12DonaldCooperPamelaSchindlerChapter13BusinessResearchMethodsChapter13ObservationalStudiesObservationNonbehavioralobservationBehavioralobservationSlide13-1ObservationNonbehavioralobservationRecordanalysisPhysicalconditionanalysisProcessoractivityanalysisSlide13-2ObservationBehavioralobservationNonverbalanalysisLinguisticanalysisExtralinguisticanalysisSpatialanalysisSlide13-3AdvantagesoftheObservationalMethodCollecttheoriginaldataatthetimeitoccursSecureinformationthatparticipantswouldignorebecauseit’ssocom
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 糖尿病病人的治療及護(hù)理
- 臟腑疾病患者的護(hù)理
- 創(chuàng)新創(chuàng)業(yè)計(jì)劃書醫(yī)院營(yíng)養(yǎng)
- 跨境證券交易平臺(tái)行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書
- 商業(yè)銀行綜合服務(wù)AI應(yīng)用行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書
- 健身房輕食吧行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書
- 七年級(jí)數(shù)學(xué)上冊(cè)第1章有理數(shù)1.5有理數(shù)的乘法和除法1.5.1有理數(shù)的乘法第一課時(shí)有理數(shù)的乘法
- 九年級(jí)數(shù)學(xué)下冊(cè)26.2實(shí)際問題與反比例函數(shù)第三課時(shí)教學(xué)
- 刀開關(guān)塑料白子行業(yè)深度研究分析報(bào)告(2024-2030版)
- 汽車行業(yè)投資事業(yè)部職責(zé)詳解
- 寵物丟失諒解協(xié)議書
- 幼兒園中班科學(xué)活動(dòng)公開課《飛機(jī)本領(lǐng)大》課件
- 體育競(jìng)彩考試題及答案
- 2022年新高考全國(guó)I卷數(shù)學(xué)真題
- 2025中考英語解題技巧專題10.閱讀表達(dá)解題技巧(學(xué)生版+解析)
- 青少年體重健康管理
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 2022年高考真題-政治(重慶卷) 含答案
- 防洪防汛監(jiān)理實(shí)施標(biāo)準(zhǔn)細(xì)則
- 客戶信用等級(jí)評(píng)定表(超實(shí)用)
- 皮膚科病案討論ppt課件
評(píng)論
0/150
提交評(píng)論